Solve for x
x=\frac{\sqrt{1239}}{3}+13\approx 24.733143938
x=-\frac{\sqrt{1239}}{3}+13\approx 1.266856062
Graph
Share
Copied to clipboard
-3x^{2}+78x-94=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-78±\sqrt{78^{2}-4\left(-3\right)\left(-94\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 78 for b, and -94 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-78±\sqrt{6084-4\left(-3\right)\left(-94\right)}}{2\left(-3\right)}
Square 78.
x=\frac{-78±\sqrt{6084+12\left(-94\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-78±\sqrt{6084-1128}}{2\left(-3\right)}
Multiply 12 times -94.
x=\frac{-78±\sqrt{4956}}{2\left(-3\right)}
Add 6084 to -1128.
x=\frac{-78±2\sqrt{1239}}{2\left(-3\right)}
Take the square root of 4956.
x=\frac{-78±2\sqrt{1239}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{1239}-78}{-6}
Now solve the equation x=\frac{-78±2\sqrt{1239}}{-6} when ± is plus. Add -78 to 2\sqrt{1239}.
x=-\frac{\sqrt{1239}}{3}+13
Divide -78+2\sqrt{1239} by -6.
x=\frac{-2\sqrt{1239}-78}{-6}
Now solve the equation x=\frac{-78±2\sqrt{1239}}{-6} when ± is minus. Subtract 2\sqrt{1239} from -78.
x=\frac{\sqrt{1239}}{3}+13
Divide -78-2\sqrt{1239} by -6.
x=-\frac{\sqrt{1239}}{3}+13 x=\frac{\sqrt{1239}}{3}+13
The equation is now solved.
-3x^{2}+78x-94=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+78x-94-\left(-94\right)=-\left(-94\right)
Add 94 to both sides of the equation.
-3x^{2}+78x=-\left(-94\right)
Subtracting -94 from itself leaves 0.
-3x^{2}+78x=94
Subtract -94 from 0.
\frac{-3x^{2}+78x}{-3}=\frac{94}{-3}
Divide both sides by -3.
x^{2}+\frac{78}{-3}x=\frac{94}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-26x=\frac{94}{-3}
Divide 78 by -3.
x^{2}-26x=-\frac{94}{3}
Divide 94 by -3.
x^{2}-26x+\left(-13\right)^{2}=-\frac{94}{3}+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-26x+169=-\frac{94}{3}+169
Square -13.
x^{2}-26x+169=\frac{413}{3}
Add -\frac{94}{3} to 169.
\left(x-13\right)^{2}=\frac{413}{3}
Factor x^{2}-26x+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-13\right)^{2}}=\sqrt{\frac{413}{3}}
Take the square root of both sides of the equation.
x-13=\frac{\sqrt{1239}}{3} x-13=-\frac{\sqrt{1239}}{3}
Simplify.
x=\frac{\sqrt{1239}}{3}+13 x=-\frac{\sqrt{1239}}{3}+13
Add 13 to both sides of the equation.
x ^ 2 -26x +\frac{94}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 26 rs = \frac{94}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 13 - u s = 13 + u
Two numbers r and s sum up to 26 exactly when the average of the two numbers is \frac{1}{2}*26 = 13. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(13 - u) (13 + u) = \frac{94}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{94}{3}
169 - u^2 = \frac{94}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{94}{3}-169 = -\frac{413}{3}
Simplify the expression by subtracting 169 on both sides
u^2 = \frac{413}{3} u = \pm\sqrt{\frac{413}{3}} = \pm \frac{\sqrt{413}}{\sqrt{3}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =13 - \frac{\sqrt{413}}{\sqrt{3}} = 1.267 s = 13 + \frac{\sqrt{413}}{\sqrt{3}} = 24.733
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}