Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(-x^{2}+4x\right)
Factor out 3.
x\left(-x+4\right)
Consider -x^{2}+4x. Factor out x.
3x\left(-x+4\right)
Rewrite the complete factored expression.
-3x^{2}+12x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±12}{2\left(-3\right)}
Take the square root of 12^{2}.
x=\frac{-12±12}{-6}
Multiply 2 times -3.
x=\frac{0}{-6}
Now solve the equation x=\frac{-12±12}{-6} when ± is plus. Add -12 to 12.
x=0
Divide 0 by -6.
x=-\frac{24}{-6}
Now solve the equation x=\frac{-12±12}{-6} when ± is minus. Subtract 12 from -12.
x=4
Divide -24 by -6.
-3x^{2}+12x=-3x\left(x-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 4 for x_{2}.