Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a+b=-1 ab=-3\times 14=-42
Factor the expression by grouping. First, the expression needs to be rewritten as -3v^{2}+av+bv+14. To find a and b, set up a system to be solved.
1,-42 2,-21 3,-14 6,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -42.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Calculate the sum for each pair.
a=6 b=-7
The solution is the pair that gives sum -1.
\left(-3v^{2}+6v\right)+\left(-7v+14\right)
Rewrite -3v^{2}-v+14 as \left(-3v^{2}+6v\right)+\left(-7v+14\right).
3v\left(-v+2\right)+7\left(-v+2\right)
Factor out 3v in the first and 7 in the second group.
\left(-v+2\right)\left(3v+7\right)
Factor out common term -v+2 by using distributive property.
-3v^{2}-v+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\times 14}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-1\right)±\sqrt{1+12\times 14}}{2\left(-3\right)}
Multiply -4 times -3.
v=\frac{-\left(-1\right)±\sqrt{1+168}}{2\left(-3\right)}
Multiply 12 times 14.
v=\frac{-\left(-1\right)±\sqrt{169}}{2\left(-3\right)}
Add 1 to 168.
v=\frac{-\left(-1\right)±13}{2\left(-3\right)}
Take the square root of 169.
v=\frac{1±13}{2\left(-3\right)}
The opposite of -1 is 1.
v=\frac{1±13}{-6}
Multiply 2 times -3.
v=\frac{14}{-6}
Now solve the equation v=\frac{1±13}{-6} when ± is plus. Add 1 to 13.
v=-\frac{7}{3}
Reduce the fraction \frac{14}{-6} to lowest terms by extracting and canceling out 2.
v=-\frac{12}{-6}
Now solve the equation v=\frac{1±13}{-6} when ± is minus. Subtract 13 from 1.
v=2
Divide -12 by -6.
-3v^{2}-v+14=-3\left(v-\left(-\frac{7}{3}\right)\right)\left(v-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{3} for x_{1} and 2 for x_{2}.
-3v^{2}-v+14=-3\left(v+\frac{7}{3}\right)\left(v-2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-3v^{2}-v+14=-3\times \frac{-3v-7}{-3}\left(v-2\right)
Add \frac{7}{3} to v by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-3v^{2}-v+14=\left(-3v-7\right)\left(v-2\right)
Cancel out 3, the greatest common factor in -3 and 3.
x ^ 2 +\frac{1}{3}x -\frac{14}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{1}{3} rs = -\frac{14}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{6} - u s = -\frac{1}{6} + u
Two numbers r and s sum up to -\frac{1}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{3} = -\frac{1}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{6} - u) (-\frac{1}{6} + u) = -\frac{14}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{14}{3}
\frac{1}{36} - u^2 = -\frac{14}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{14}{3}-\frac{1}{36} = -\frac{169}{36}
Simplify the expression by subtracting \frac{1}{36} on both sides
u^2 = \frac{169}{36} u = \pm\sqrt{\frac{169}{36}} = \pm \frac{13}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{6} - \frac{13}{6} = -2.333 s = -\frac{1}{6} + \frac{13}{6} = 2.000
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.