Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(-s^{2}+3s\right)
Factor out 3.
s\left(-s+3\right)
Consider -s^{2}+3s. Factor out s.
3s\left(-s+3\right)
Rewrite the complete factored expression.
-3s^{2}+9s=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-9±\sqrt{9^{2}}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-9±9}{2\left(-3\right)}
Take the square root of 9^{2}.
s=\frac{-9±9}{-6}
Multiply 2 times -3.
s=\frac{0}{-6}
Now solve the equation s=\frac{-9±9}{-6} when ± is plus. Add -9 to 9.
s=0
Divide 0 by -6.
s=-\frac{18}{-6}
Now solve the equation s=\frac{-9±9}{-6} when ± is minus. Subtract 9 from -9.
s=3
Divide -18 by -6.
-3s^{2}+9s=-3s\left(s-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 3 for x_{2}.