Solve for r
r=\sqrt{194}+15\approx 28.928388277
r=15-\sqrt{194}\approx 1.071611723
Share
Copied to clipboard
-3r^{2}+90r=93
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3r^{2}+90r-93=93-93
Subtract 93 from both sides of the equation.
-3r^{2}+90r-93=0
Subtracting 93 from itself leaves 0.
r=\frac{-90±\sqrt{90^{2}-4\left(-3\right)\left(-93\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 90 for b, and -93 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-90±\sqrt{8100-4\left(-3\right)\left(-93\right)}}{2\left(-3\right)}
Square 90.
r=\frac{-90±\sqrt{8100+12\left(-93\right)}}{2\left(-3\right)}
Multiply -4 times -3.
r=\frac{-90±\sqrt{8100-1116}}{2\left(-3\right)}
Multiply 12 times -93.
r=\frac{-90±\sqrt{6984}}{2\left(-3\right)}
Add 8100 to -1116.
r=\frac{-90±6\sqrt{194}}{2\left(-3\right)}
Take the square root of 6984.
r=\frac{-90±6\sqrt{194}}{-6}
Multiply 2 times -3.
r=\frac{6\sqrt{194}-90}{-6}
Now solve the equation r=\frac{-90±6\sqrt{194}}{-6} when ± is plus. Add -90 to 6\sqrt{194}.
r=15-\sqrt{194}
Divide -90+6\sqrt{194} by -6.
r=\frac{-6\sqrt{194}-90}{-6}
Now solve the equation r=\frac{-90±6\sqrt{194}}{-6} when ± is minus. Subtract 6\sqrt{194} from -90.
r=\sqrt{194}+15
Divide -90-6\sqrt{194} by -6.
r=15-\sqrt{194} r=\sqrt{194}+15
The equation is now solved.
-3r^{2}+90r=93
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3r^{2}+90r}{-3}=\frac{93}{-3}
Divide both sides by -3.
r^{2}+\frac{90}{-3}r=\frac{93}{-3}
Dividing by -3 undoes the multiplication by -3.
r^{2}-30r=\frac{93}{-3}
Divide 90 by -3.
r^{2}-30r=-31
Divide 93 by -3.
r^{2}-30r+\left(-15\right)^{2}=-31+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-30r+225=-31+225
Square -15.
r^{2}-30r+225=194
Add -31 to 225.
\left(r-15\right)^{2}=194
Factor r^{2}-30r+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-15\right)^{2}}=\sqrt{194}
Take the square root of both sides of the equation.
r-15=\sqrt{194} r-15=-\sqrt{194}
Simplify.
r=\sqrt{194}+15 r=15-\sqrt{194}
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}