Solve for k
k\in \begin{bmatrix}-\frac{2\sqrt{3}}{3}+1,\frac{2\sqrt{3}}{3}+1\end{bmatrix}
Share
Copied to clipboard
3k^{2}-6k-1\leq 0
Multiply the inequality by -1 to make the coefficient of the highest power in -3k^{2}+6k+1 positive. Since -1 is negative, the inequality direction is changed.
3k^{2}-6k-1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -6 for b, and -1 for c in the quadratic formula.
k=\frac{6±4\sqrt{3}}{6}
Do the calculations.
k=\frac{2\sqrt{3}}{3}+1 k=-\frac{2\sqrt{3}}{3}+1
Solve the equation k=\frac{6±4\sqrt{3}}{6} when ± is plus and when ± is minus.
3\left(k-\left(\frac{2\sqrt{3}}{3}+1\right)\right)\left(k-\left(-\frac{2\sqrt{3}}{3}+1\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
k-\left(\frac{2\sqrt{3}}{3}+1\right)\geq 0 k-\left(-\frac{2\sqrt{3}}{3}+1\right)\leq 0
For the product to be ≤0, one of the values k-\left(\frac{2\sqrt{3}}{3}+1\right) and k-\left(-\frac{2\sqrt{3}}{3}+1\right) has to be ≥0 and the other has to be ≤0. Consider the case when k-\left(\frac{2\sqrt{3}}{3}+1\right)\geq 0 and k-\left(-\frac{2\sqrt{3}}{3}+1\right)\leq 0.
k\in \emptyset
This is false for any k.
k-\left(-\frac{2\sqrt{3}}{3}+1\right)\geq 0 k-\left(\frac{2\sqrt{3}}{3}+1\right)\leq 0
Consider the case when k-\left(\frac{2\sqrt{3}}{3}+1\right)\leq 0 and k-\left(-\frac{2\sqrt{3}}{3}+1\right)\geq 0.
k\in \begin{bmatrix}-\frac{2\sqrt{3}}{3}+1,\frac{2\sqrt{3}}{3}+1\end{bmatrix}
The solution satisfying both inequalities is k\in \left[-\frac{2\sqrt{3}}{3}+1,\frac{2\sqrt{3}}{3}+1\right].
k\in \begin{bmatrix}-\frac{2\sqrt{3}}{3}+1,\frac{2\sqrt{3}}{3}+1\end{bmatrix}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}