Solve for d
d=\frac{\sqrt{161}-15}{2}\approx -1.15571123
d=\frac{-\sqrt{161}-15}{2}\approx -13.84428877
Share
Copied to clipboard
-3d^{2}-45d=48
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3d^{2}-45d-48=48-48
Subtract 48 from both sides of the equation.
-3d^{2}-45d-48=0
Subtracting 48 from itself leaves 0.
d=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\left(-3\right)\left(-48\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -45 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-45\right)±\sqrt{2025-4\left(-3\right)\left(-48\right)}}{2\left(-3\right)}
Square -45.
d=\frac{-\left(-45\right)±\sqrt{2025+12\left(-48\right)}}{2\left(-3\right)}
Multiply -4 times -3.
d=\frac{-\left(-45\right)±\sqrt{2025-576}}{2\left(-3\right)}
Multiply 12 times -48.
d=\frac{-\left(-45\right)±\sqrt{1449}}{2\left(-3\right)}
Add 2025 to -576.
d=\frac{-\left(-45\right)±3\sqrt{161}}{2\left(-3\right)}
Take the square root of 1449.
d=\frac{45±3\sqrt{161}}{2\left(-3\right)}
The opposite of -45 is 45.
d=\frac{45±3\sqrt{161}}{-6}
Multiply 2 times -3.
d=\frac{3\sqrt{161}+45}{-6}
Now solve the equation d=\frac{45±3\sqrt{161}}{-6} when ± is plus. Add 45 to 3\sqrt{161}.
d=\frac{-\sqrt{161}-15}{2}
Divide 45+3\sqrt{161} by -6.
d=\frac{45-3\sqrt{161}}{-6}
Now solve the equation d=\frac{45±3\sqrt{161}}{-6} when ± is minus. Subtract 3\sqrt{161} from 45.
d=\frac{\sqrt{161}-15}{2}
Divide 45-3\sqrt{161} by -6.
d=\frac{-\sqrt{161}-15}{2} d=\frac{\sqrt{161}-15}{2}
The equation is now solved.
-3d^{2}-45d=48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3d^{2}-45d}{-3}=\frac{48}{-3}
Divide both sides by -3.
d^{2}+\left(-\frac{45}{-3}\right)d=\frac{48}{-3}
Dividing by -3 undoes the multiplication by -3.
d^{2}+15d=\frac{48}{-3}
Divide -45 by -3.
d^{2}+15d=-16
Divide 48 by -3.
d^{2}+15d+\left(\frac{15}{2}\right)^{2}=-16+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+15d+\frac{225}{4}=-16+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
d^{2}+15d+\frac{225}{4}=\frac{161}{4}
Add -16 to \frac{225}{4}.
\left(d+\frac{15}{2}\right)^{2}=\frac{161}{4}
Factor d^{2}+15d+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{15}{2}\right)^{2}}=\sqrt{\frac{161}{4}}
Take the square root of both sides of the equation.
d+\frac{15}{2}=\frac{\sqrt{161}}{2} d+\frac{15}{2}=-\frac{\sqrt{161}}{2}
Simplify.
d=\frac{\sqrt{161}-15}{2} d=\frac{-\sqrt{161}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}