- 3 b - 1 \% > - 24
Solve for b
b<\frac{2399}{300}
Share
Copied to clipboard
-3b>-24+\frac{1}{100}
Add \frac{1}{100} to both sides.
-3b>-\frac{2400}{100}+\frac{1}{100}
Convert -24 to fraction -\frac{2400}{100}.
-3b>\frac{-2400+1}{100}
Since -\frac{2400}{100} and \frac{1}{100} have the same denominator, add them by adding their numerators.
-3b>-\frac{2399}{100}
Add -2400 and 1 to get -2399.
b<\frac{-\frac{2399}{100}}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
b<\frac{-2399}{100\left(-3\right)}
Express \frac{-\frac{2399}{100}}{-3} as a single fraction.
b<\frac{-2399}{-300}
Multiply 100 and -3 to get -300.
b<\frac{2399}{300}
Fraction \frac{-2399}{-300} can be simplified to \frac{2399}{300} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}