Factor
-3a\left(1-2a\right)^{2}
Evaluate
-3a\left(1-2a\right)^{2}
Share
Copied to clipboard
3\left(-a+4a^{2}-4a^{3}\right)
Factor out 3.
a\left(-1+4a-4a^{2}\right)
Consider -a+4a^{2}-4a^{3}. Factor out a.
-4a^{2}+4a-1
Consider -1+4a-4a^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
p+q=4 pq=-4\left(-1\right)=4
Factor the expression by grouping. First, the expression needs to be rewritten as -4a^{2}+pa+qa-1. To find p and q, set up a system to be solved.
1,4 2,2
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
p=2 q=2
The solution is the pair that gives sum 4.
\left(-4a^{2}+2a\right)+\left(2a-1\right)
Rewrite -4a^{2}+4a-1 as \left(-4a^{2}+2a\right)+\left(2a-1\right).
-2a\left(2a-1\right)+2a-1
Factor out -2a in -4a^{2}+2a.
\left(2a-1\right)\left(-2a+1\right)
Factor out common term 2a-1 by using distributive property.
3a\left(2a-1\right)\left(-2a+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}