Solve for x
x=3y+2z
Solve for y
y=\frac{x-2z}{3}
Share
Copied to clipboard
-3x+3+9\left(y-1\right)+6\left(z+1\right)=0
Use the distributive property to multiply -3 by x-1.
-3x+3+9y-9+6\left(z+1\right)=0
Use the distributive property to multiply 9 by y-1.
-3x-6+9y+6\left(z+1\right)=0
Subtract 9 from 3 to get -6.
-3x-6+9y+6z+6=0
Use the distributive property to multiply 6 by z+1.
-3x+9y+6z=0
Add -6 and 6 to get 0.
-3x+6z=-9y
Subtract 9y from both sides. Anything subtracted from zero gives its negation.
-3x=-9y-6z
Subtract 6z from both sides.
\frac{-3x}{-3}=\frac{-9y-6z}{-3}
Divide both sides by -3.
x=\frac{-9y-6z}{-3}
Dividing by -3 undoes the multiplication by -3.
x=3y+2z
Divide -9y-6z by -3.
-3x+3+9\left(y-1\right)+6\left(z+1\right)=0
Use the distributive property to multiply -3 by x-1.
-3x+3+9y-9+6\left(z+1\right)=0
Use the distributive property to multiply 9 by y-1.
-3x-6+9y+6\left(z+1\right)=0
Subtract 9 from 3 to get -6.
-3x-6+9y+6z+6=0
Use the distributive property to multiply 6 by z+1.
-3x+9y+6z=0
Add -6 and 6 to get 0.
9y+6z=3x
Add 3x to both sides. Anything plus zero gives itself.
9y=3x-6z
Subtract 6z from both sides.
\frac{9y}{9}=\frac{3x-6z}{9}
Divide both sides by 9.
y=\frac{3x-6z}{9}
Dividing by 9 undoes the multiplication by 9.
y=\frac{x-2z}{3}
Divide 3x-6z by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}