Solve for R
R=\frac{25-2T}{3}
Solve for T
T=\frac{25-3R}{2}
Share
Copied to clipboard
-3R+15=2\left(T-5\right)
Use the distributive property to multiply -3 by R-5.
-3R+15=2T-10
Use the distributive property to multiply 2 by T-5.
-3R=2T-10-15
Subtract 15 from both sides.
-3R=2T-25
Subtract 15 from -10 to get -25.
\frac{-3R}{-3}=\frac{2T-25}{-3}
Divide both sides by -3.
R=\frac{2T-25}{-3}
Dividing by -3 undoes the multiplication by -3.
R=\frac{25-2T}{3}
Divide 2T-25 by -3.
-3R+15=2\left(T-5\right)
Use the distributive property to multiply -3 by R-5.
-3R+15=2T-10
Use the distributive property to multiply 2 by T-5.
2T-10=-3R+15
Swap sides so that all variable terms are on the left hand side.
2T=-3R+15+10
Add 10 to both sides.
2T=-3R+25
Add 15 and 10 to get 25.
2T=25-3R
The equation is in standard form.
\frac{2T}{2}=\frac{25-3R}{2}
Divide both sides by 2.
T=\frac{25-3R}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}