Solve for u
u = \frac{9}{5} = 1\frac{4}{5} = 1.8
Share
Copied to clipboard
-9u+24+2u=3\left(u+2\right)
Use the distributive property to multiply -3 by 3u-8.
-7u+24=3\left(u+2\right)
Combine -9u and 2u to get -7u.
-7u+24=3u+6
Use the distributive property to multiply 3 by u+2.
-7u+24-3u=6
Subtract 3u from both sides.
-10u+24=6
Combine -7u and -3u to get -10u.
-10u=6-24
Subtract 24 from both sides.
-10u=-18
Subtract 24 from 6 to get -18.
u=\frac{-18}{-10}
Divide both sides by -10.
u=\frac{9}{5}
Reduce the fraction \frac{-18}{-10} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}