Solve for x
x\leq -\frac{2}{3}
Graph
Share
Copied to clipboard
-6x-9+2\geq \frac{9}{3}\left(3x+1\right)
Use the distributive property to multiply -3 by 2x+3.
-6x-7\geq \frac{9}{3}\left(3x+1\right)
Add -9 and 2 to get -7.
-6x-7\geq 3\left(3x+1\right)
Divide 9 by 3 to get 3.
-6x-7\geq 9x+3
Use the distributive property to multiply 3 by 3x+1.
-6x-7-9x\geq 3
Subtract 9x from both sides.
-15x-7\geq 3
Combine -6x and -9x to get -15x.
-15x\geq 3+7
Add 7 to both sides.
-15x\geq 10
Add 3 and 7 to get 10.
x\leq \frac{10}{-15}
Divide both sides by -15. Since -15 is negative, the inequality direction is changed.
x\leq -\frac{2}{3}
Reduce the fraction \frac{10}{-15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}