Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
-3\times \frac{1}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Use the distributive property to multiply -3 by \frac{1}{9}-x.
\frac{-3}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Multiply -3 and \frac{1}{9} to get \frac{-3}{9}.
-\frac{1}{3}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
-\frac{1}{3}+3x=x-4x-\frac{1}{3}+6x
To find the opposite of 4x+\frac{1}{3}, find the opposite of each term.
-\frac{1}{3}+3x=-3x-\frac{1}{3}+6x
Combine x and -4x to get -3x.
-\frac{1}{3}+3x=3x-\frac{1}{3}
Combine -3x and 6x to get 3x.
-\frac{1}{3}+3x-3x=-\frac{1}{3}
Subtract 3x from both sides.
-\frac{1}{3}=-\frac{1}{3}
Combine 3x and -3x to get 0.
\text{true}
Compare -\frac{1}{3} and -\frac{1}{3}.
x\in \mathrm{C}
This is true for any x.
-3\times \frac{1}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Use the distributive property to multiply -3 by \frac{1}{9}-x.
\frac{-3}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Multiply -3 and \frac{1}{9} to get \frac{-3}{9}.
-\frac{1}{3}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
-\frac{1}{3}+3x=x-4x-\frac{1}{3}+6x
To find the opposite of 4x+\frac{1}{3}, find the opposite of each term.
-\frac{1}{3}+3x=-3x-\frac{1}{3}+6x
Combine x and -4x to get -3x.
-\frac{1}{3}+3x=3x-\frac{1}{3}
Combine -3x and 6x to get 3x.
-\frac{1}{3}+3x-3x=-\frac{1}{3}
Subtract 3x from both sides.
-\frac{1}{3}=-\frac{1}{3}
Combine 3x and -3x to get 0.
\text{true}
Compare -\frac{1}{3} and -\frac{1}{3}.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}