Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3\times \frac{1}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Use the distributive property to multiply -3 by \frac{1}{9}-x.
\frac{-3}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Multiply -3 and \frac{1}{9} to get \frac{-3}{9}.
-\frac{1}{3}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
-\frac{1}{3}+3x=x-4x-\frac{1}{3}+6x
To find the opposite of 4x+\frac{1}{3}, find the opposite of each term.
-\frac{1}{3}+3x=-3x-\frac{1}{3}+6x
Combine x and -4x to get -3x.
-\frac{1}{3}+3x=3x-\frac{1}{3}
Combine -3x and 6x to get 3x.
-\frac{1}{3}+3x-3x=-\frac{1}{3}
Subtract 3x from both sides.
-\frac{1}{3}=-\frac{1}{3}
Combine 3x and -3x to get 0.
\text{true}
Compare -\frac{1}{3} and -\frac{1}{3}.
x\in \mathrm{C}
This is true for any x.
-3\times \frac{1}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Use the distributive property to multiply -3 by \frac{1}{9}-x.
\frac{-3}{9}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Multiply -3 and \frac{1}{9} to get \frac{-3}{9}.
-\frac{1}{3}+3x=x-\left(4x+\frac{1}{3}\right)+6x
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
-\frac{1}{3}+3x=x-4x-\frac{1}{3}+6x
To find the opposite of 4x+\frac{1}{3}, find the opposite of each term.
-\frac{1}{3}+3x=-3x-\frac{1}{3}+6x
Combine x and -4x to get -3x.
-\frac{1}{3}+3x=3x-\frac{1}{3}
Combine -3x and 6x to get 3x.
-\frac{1}{3}+3x-3x=-\frac{1}{3}
Subtract 3x from both sides.
-\frac{1}{3}=-\frac{1}{3}
Combine 3x and -3x to get 0.
\text{true}
Compare -\frac{1}{3} and -\frac{1}{3}.
x\in \mathrm{R}
This is true for any x.