Evaluate (complex solution)
-\frac{2\sqrt{6}i}{3}\approx -0-1.632993162i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
-3\times \frac{\sqrt{-8}}{\sqrt{27}}
Rewrite the square root of the division \sqrt{-\frac{8}{27}} as the division of square roots \frac{\sqrt{-8}}{\sqrt{27}}.
-3\times \frac{2i\sqrt{2}}{\sqrt{27}}
Factor -8=\left(2i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 2} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{2}. Take the square root of \left(2i\right)^{2}.
-3\times \frac{2i\sqrt{2}}{3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-3\times \frac{2i\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2i\sqrt{2}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-3\times \frac{2i\sqrt{2}\sqrt{3}}{3\times 3}
The square of \sqrt{3} is 3.
-3\times \frac{2i\sqrt{6}}{3\times 3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-3\times \frac{2i\sqrt{6}}{9}
Multiply 3 and 3 to get 9.
-3\times \left(\frac{2}{9}i\right)\sqrt{6}
Divide 2i\sqrt{6} by 9 to get \frac{2}{9}i\sqrt{6}.
-\frac{2}{3}i\sqrt{6}
Multiply -3 and \frac{2}{9}i to get -\frac{2}{3}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}