Skip to main content
Evaluate (complex solution)
Tick mark Image
Real Part (complex solution)
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-3\times \frac{\sqrt{-8}}{\sqrt{27}}
Rewrite the square root of the division \sqrt{-\frac{8}{27}} as the division of square roots \frac{\sqrt{-8}}{\sqrt{27}}.
-3\times \frac{2i\sqrt{2}}{\sqrt{27}}
Factor -8=\left(2i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 2} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{2}. Take the square root of \left(2i\right)^{2}.
-3\times \frac{2i\sqrt{2}}{3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-3\times \frac{2i\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2i\sqrt{2}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-3\times \frac{2i\sqrt{2}\sqrt{3}}{3\times 3}
The square of \sqrt{3} is 3.
-3\times \frac{2i\sqrt{6}}{3\times 3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-3\times \frac{2i\sqrt{6}}{9}
Multiply 3 and 3 to get 9.
-3\times \left(\frac{2}{9}i\right)\sqrt{6}
Divide 2i\sqrt{6} by 9 to get \frac{2}{9}i\sqrt{6}.
-\frac{2}{3}i\sqrt{6}
Multiply -3 and \frac{2}{9}i to get -\frac{2}{3}i.