Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(-6x^{2}+9x+10)
Multiply -3 and 2 to get -6.
-6x^{2}+9x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\left(-6\right)\times 10}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\left(-6\right)\times 10}}{2\left(-6\right)}
Square 9.
x=\frac{-9±\sqrt{81+24\times 10}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-9±\sqrt{81+240}}{2\left(-6\right)}
Multiply 24 times 10.
x=\frac{-9±\sqrt{321}}{2\left(-6\right)}
Add 81 to 240.
x=\frac{-9±\sqrt{321}}{-12}
Multiply 2 times -6.
x=\frac{\sqrt{321}-9}{-12}
Now solve the equation x=\frac{-9±\sqrt{321}}{-12} when ± is plus. Add -9 to \sqrt{321}.
x=-\frac{\sqrt{321}}{12}+\frac{3}{4}
Divide -9+\sqrt{321} by -12.
x=\frac{-\sqrt{321}-9}{-12}
Now solve the equation x=\frac{-9±\sqrt{321}}{-12} when ± is minus. Subtract \sqrt{321} from -9.
x=\frac{\sqrt{321}}{12}+\frac{3}{4}
Divide -9-\sqrt{321} by -12.
-6x^{2}+9x+10=-6\left(x-\left(-\frac{\sqrt{321}}{12}+\frac{3}{4}\right)\right)\left(x-\left(\frac{\sqrt{321}}{12}+\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{4}-\frac{\sqrt{321}}{12} for x_{1} and \frac{3}{4}+\frac{\sqrt{321}}{12} for x_{2}.
-6x^{2}+9x+10
Multiply -3 and 2 to get -6.