Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-27x^{2}=6
Calculate 3 to the power of 3 and get 27.
x^{2}=\frac{6}{-27}
Divide both sides by -27.
x^{2}=-\frac{2}{9}
Reduce the fraction \frac{6}{-27} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{2}i}{3} x=-\frac{\sqrt{2}i}{3}
The equation is now solved.
-27x^{2}=6
Calculate 3 to the power of 3 and get 27.
-27x^{2}-6=0
Subtract 6 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-27\right)\left(-6\right)}}{2\left(-27\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27 for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-27\right)\left(-6\right)}}{2\left(-27\right)}
Square 0.
x=\frac{0±\sqrt{108\left(-6\right)}}{2\left(-27\right)}
Multiply -4 times -27.
x=\frac{0±\sqrt{-648}}{2\left(-27\right)}
Multiply 108 times -6.
x=\frac{0±18\sqrt{2}i}{2\left(-27\right)}
Take the square root of -648.
x=\frac{0±18\sqrt{2}i}{-54}
Multiply 2 times -27.
x=-\frac{\sqrt{2}i}{3}
Now solve the equation x=\frac{0±18\sqrt{2}i}{-54} when ± is plus.
x=\frac{\sqrt{2}i}{3}
Now solve the equation x=\frac{0±18\sqrt{2}i}{-54} when ± is minus.
x=-\frac{\sqrt{2}i}{3} x=\frac{\sqrt{2}i}{3}
The equation is now solved.