Solve for x (complex solution)
x=-\frac{\sqrt{2}i}{3}\approx -0-0.471404521i
x=\frac{\sqrt{2}i}{3}\approx 0.471404521i
Graph
Share
Copied to clipboard
-27x^{2}=6
Calculate 3 to the power of 3 and get 27.
x^{2}=\frac{6}{-27}
Divide both sides by -27.
x^{2}=-\frac{2}{9}
Reduce the fraction \frac{6}{-27} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{2}i}{3} x=-\frac{\sqrt{2}i}{3}
The equation is now solved.
-27x^{2}=6
Calculate 3 to the power of 3 and get 27.
-27x^{2}-6=0
Subtract 6 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-27\right)\left(-6\right)}}{2\left(-27\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27 for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-27\right)\left(-6\right)}}{2\left(-27\right)}
Square 0.
x=\frac{0±\sqrt{108\left(-6\right)}}{2\left(-27\right)}
Multiply -4 times -27.
x=\frac{0±\sqrt{-648}}{2\left(-27\right)}
Multiply 108 times -6.
x=\frac{0±18\sqrt{2}i}{2\left(-27\right)}
Take the square root of -648.
x=\frac{0±18\sqrt{2}i}{-54}
Multiply 2 times -27.
x=-\frac{\sqrt{2}i}{3}
Now solve the equation x=\frac{0±18\sqrt{2}i}{-54} when ± is plus.
x=\frac{\sqrt{2}i}{3}
Now solve the equation x=\frac{0±18\sqrt{2}i}{-54} when ± is minus.
x=-\frac{\sqrt{2}i}{3} x=\frac{\sqrt{2}i}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}