Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(-9r^{3}+6r^{2}+8r\right)
Factor out 3.
r\left(-9r^{2}+6r+8\right)
Consider -9r^{3}+6r^{2}+8r. Factor out r.
a+b=6 ab=-9\times 8=-72
Consider -9r^{2}+6r+8. Factor the expression by grouping. First, the expression needs to be rewritten as -9r^{2}+ar+br+8. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=12 b=-6
The solution is the pair that gives sum 6.
\left(-9r^{2}+12r\right)+\left(-6r+8\right)
Rewrite -9r^{2}+6r+8 as \left(-9r^{2}+12r\right)+\left(-6r+8\right).
-3r\left(3r-4\right)-2\left(3r-4\right)
Factor out -3r in the first and -2 in the second group.
\left(3r-4\right)\left(-3r-2\right)
Factor out common term 3r-4 by using distributive property.
3r\left(3r-4\right)\left(-3r-2\right)
Rewrite the complete factored expression.