Solve for m
m = -\frac{3}{2} = -1\frac{1}{2} = -1.5
m=-9
Share
Copied to clipboard
2m^{2}+21m=-27
Swap sides so that all variable terms are on the left hand side.
2m^{2}+21m+27=0
Add 27 to both sides.
a+b=21 ab=2\times 27=54
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2m^{2}+am+bm+27. To find a and b, set up a system to be solved.
1,54 2,27 3,18 6,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 54.
1+54=55 2+27=29 3+18=21 6+9=15
Calculate the sum for each pair.
a=3 b=18
The solution is the pair that gives sum 21.
\left(2m^{2}+3m\right)+\left(18m+27\right)
Rewrite 2m^{2}+21m+27 as \left(2m^{2}+3m\right)+\left(18m+27\right).
m\left(2m+3\right)+9\left(2m+3\right)
Factor out m in the first and 9 in the second group.
\left(2m+3\right)\left(m+9\right)
Factor out common term 2m+3 by using distributive property.
m=-\frac{3}{2} m=-9
To find equation solutions, solve 2m+3=0 and m+9=0.
2m^{2}+21m=-27
Swap sides so that all variable terms are on the left hand side.
2m^{2}+21m+27=0
Add 27 to both sides.
m=\frac{-21±\sqrt{21^{2}-4\times 2\times 27}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 21 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-21±\sqrt{441-4\times 2\times 27}}{2\times 2}
Square 21.
m=\frac{-21±\sqrt{441-8\times 27}}{2\times 2}
Multiply -4 times 2.
m=\frac{-21±\sqrt{441-216}}{2\times 2}
Multiply -8 times 27.
m=\frac{-21±\sqrt{225}}{2\times 2}
Add 441 to -216.
m=\frac{-21±15}{2\times 2}
Take the square root of 225.
m=\frac{-21±15}{4}
Multiply 2 times 2.
m=-\frac{6}{4}
Now solve the equation m=\frac{-21±15}{4} when ± is plus. Add -21 to 15.
m=-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
m=-\frac{36}{4}
Now solve the equation m=\frac{-21±15}{4} when ± is minus. Subtract 15 from -21.
m=-9
Divide -36 by 4.
m=-\frac{3}{2} m=-9
The equation is now solved.
2m^{2}+21m=-27
Swap sides so that all variable terms are on the left hand side.
\frac{2m^{2}+21m}{2}=-\frac{27}{2}
Divide both sides by 2.
m^{2}+\frac{21}{2}m=-\frac{27}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}+\frac{21}{2}m+\left(\frac{21}{4}\right)^{2}=-\frac{27}{2}+\left(\frac{21}{4}\right)^{2}
Divide \frac{21}{2}, the coefficient of the x term, by 2 to get \frac{21}{4}. Then add the square of \frac{21}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{21}{2}m+\frac{441}{16}=-\frac{27}{2}+\frac{441}{16}
Square \frac{21}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{21}{2}m+\frac{441}{16}=\frac{225}{16}
Add -\frac{27}{2} to \frac{441}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{21}{4}\right)^{2}=\frac{225}{16}
Factor m^{2}+\frac{21}{2}m+\frac{441}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{21}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
m+\frac{21}{4}=\frac{15}{4} m+\frac{21}{4}=-\frac{15}{4}
Simplify.
m=-\frac{3}{2} m=-9
Subtract \frac{21}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}