Solve for y
y=-\frac{3}{8}=-0.375
y=0
Graph
Share
Copied to clipboard
-24y^{2}-9y=0
Subtract 9y from both sides.
y\left(-24y-9\right)=0
Factor out y.
y=0 y=-\frac{3}{8}
To find equation solutions, solve y=0 and -24y-9=0.
-24y^{2}-9y=0
Subtract 9y from both sides.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, -9 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-9\right)±9}{2\left(-24\right)}
Take the square root of \left(-9\right)^{2}.
y=\frac{9±9}{2\left(-24\right)}
The opposite of -9 is 9.
y=\frac{9±9}{-48}
Multiply 2 times -24.
y=\frac{18}{-48}
Now solve the equation y=\frac{9±9}{-48} when ± is plus. Add 9 to 9.
y=-\frac{3}{8}
Reduce the fraction \frac{18}{-48} to lowest terms by extracting and canceling out 6.
y=\frac{0}{-48}
Now solve the equation y=\frac{9±9}{-48} when ± is minus. Subtract 9 from 9.
y=0
Divide 0 by -48.
y=-\frac{3}{8} y=0
The equation is now solved.
-24y^{2}-9y=0
Subtract 9y from both sides.
\frac{-24y^{2}-9y}{-24}=\frac{0}{-24}
Divide both sides by -24.
y^{2}+\left(-\frac{9}{-24}\right)y=\frac{0}{-24}
Dividing by -24 undoes the multiplication by -24.
y^{2}+\frac{3}{8}y=\frac{0}{-24}
Reduce the fraction \frac{-9}{-24} to lowest terms by extracting and canceling out 3.
y^{2}+\frac{3}{8}y=0
Divide 0 by -24.
y^{2}+\frac{3}{8}y+\left(\frac{3}{16}\right)^{2}=\left(\frac{3}{16}\right)^{2}
Divide \frac{3}{8}, the coefficient of the x term, by 2 to get \frac{3}{16}. Then add the square of \frac{3}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{3}{8}y+\frac{9}{256}=\frac{9}{256}
Square \frac{3}{16} by squaring both the numerator and the denominator of the fraction.
\left(y+\frac{3}{16}\right)^{2}=\frac{9}{256}
Factor y^{2}+\frac{3}{8}y+\frac{9}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{3}{16}\right)^{2}}=\sqrt{\frac{9}{256}}
Take the square root of both sides of the equation.
y+\frac{3}{16}=\frac{3}{16} y+\frac{3}{16}=-\frac{3}{16}
Simplify.
y=0 y=-\frac{3}{8}
Subtract \frac{3}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}