Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-24x^{2}=8
Add 8 to both sides. Anything plus zero gives itself.
x^{2}=\frac{8}{-24}
Divide both sides by -24.
x^{2}=-\frac{1}{3}
Reduce the fraction \frac{8}{-24} to lowest terms by extracting and canceling out 8.
x=\frac{\sqrt{3}i}{3} x=-\frac{\sqrt{3}i}{3}
The equation is now solved.
-24x^{2}-8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-24\right)\left(-8\right)}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-24\right)\left(-8\right)}}{2\left(-24\right)}
Square 0.
x=\frac{0±\sqrt{96\left(-8\right)}}{2\left(-24\right)}
Multiply -4 times -24.
x=\frac{0±\sqrt{-768}}{2\left(-24\right)}
Multiply 96 times -8.
x=\frac{0±16\sqrt{3}i}{2\left(-24\right)}
Take the square root of -768.
x=\frac{0±16\sqrt{3}i}{-48}
Multiply 2 times -24.
x=-\frac{\sqrt{3}i}{3}
Now solve the equation x=\frac{0±16\sqrt{3}i}{-48} when ± is plus.
x=\frac{\sqrt{3}i}{3}
Now solve the equation x=\frac{0±16\sqrt{3}i}{-48} when ± is minus.
x=-\frac{\sqrt{3}i}{3} x=\frac{\sqrt{3}i}{3}
The equation is now solved.