Solve for x
x = \frac{\sqrt{6001} + 59}{42} \approx 3.249193372
x=\frac{59-\sqrt{6001}}{42}\approx -0.439669563
Graph
Share
Copied to clipboard
-21x^{2}+77x-\left(-30\right)=18x
Subtract -30 from both sides.
-21x^{2}+77x+30=18x
The opposite of -30 is 30.
-21x^{2}+77x+30-18x=0
Subtract 18x from both sides.
-21x^{2}+59x+30=0
Combine 77x and -18x to get 59x.
x=\frac{-59±\sqrt{59^{2}-4\left(-21\right)\times 30}}{2\left(-21\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -21 for a, 59 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-59±\sqrt{3481-4\left(-21\right)\times 30}}{2\left(-21\right)}
Square 59.
x=\frac{-59±\sqrt{3481+84\times 30}}{2\left(-21\right)}
Multiply -4 times -21.
x=\frac{-59±\sqrt{3481+2520}}{2\left(-21\right)}
Multiply 84 times 30.
x=\frac{-59±\sqrt{6001}}{2\left(-21\right)}
Add 3481 to 2520.
x=\frac{-59±\sqrt{6001}}{-42}
Multiply 2 times -21.
x=\frac{\sqrt{6001}-59}{-42}
Now solve the equation x=\frac{-59±\sqrt{6001}}{-42} when ± is plus. Add -59 to \sqrt{6001}.
x=\frac{59-\sqrt{6001}}{42}
Divide -59+\sqrt{6001} by -42.
x=\frac{-\sqrt{6001}-59}{-42}
Now solve the equation x=\frac{-59±\sqrt{6001}}{-42} when ± is minus. Subtract \sqrt{6001} from -59.
x=\frac{\sqrt{6001}+59}{42}
Divide -59-\sqrt{6001} by -42.
x=\frac{59-\sqrt{6001}}{42} x=\frac{\sqrt{6001}+59}{42}
The equation is now solved.
-21x^{2}+77x-18x=-30
Subtract 18x from both sides.
-21x^{2}+59x=-30
Combine 77x and -18x to get 59x.
\frac{-21x^{2}+59x}{-21}=-\frac{30}{-21}
Divide both sides by -21.
x^{2}+\frac{59}{-21}x=-\frac{30}{-21}
Dividing by -21 undoes the multiplication by -21.
x^{2}-\frac{59}{21}x=-\frac{30}{-21}
Divide 59 by -21.
x^{2}-\frac{59}{21}x=\frac{10}{7}
Reduce the fraction \frac{-30}{-21} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{59}{21}x+\left(-\frac{59}{42}\right)^{2}=\frac{10}{7}+\left(-\frac{59}{42}\right)^{2}
Divide -\frac{59}{21}, the coefficient of the x term, by 2 to get -\frac{59}{42}. Then add the square of -\frac{59}{42} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{59}{21}x+\frac{3481}{1764}=\frac{10}{7}+\frac{3481}{1764}
Square -\frac{59}{42} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{59}{21}x+\frac{3481}{1764}=\frac{6001}{1764}
Add \frac{10}{7} to \frac{3481}{1764} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{59}{42}\right)^{2}=\frac{6001}{1764}
Factor x^{2}-\frac{59}{21}x+\frac{3481}{1764}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{42}\right)^{2}}=\sqrt{\frac{6001}{1764}}
Take the square root of both sides of the equation.
x-\frac{59}{42}=\frac{\sqrt{6001}}{42} x-\frac{59}{42}=-\frac{\sqrt{6001}}{42}
Simplify.
x=\frac{\sqrt{6001}+59}{42} x=\frac{59-\sqrt{6001}}{42}
Add \frac{59}{42} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}