Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x-21
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=1\left(-21\right)=-21
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
1,-21 3,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -21.
1-21=-20 3-7=-4
Calculate the sum for each pair.
a=-7 b=3
The solution is the pair that gives sum -4.
\left(x^{2}-7x\right)+\left(3x-21\right)
Rewrite x^{2}-4x-21 as \left(x^{2}-7x\right)+\left(3x-21\right).
x\left(x-7\right)+3\left(x-7\right)
Factor out x in the first and 3 in the second group.
\left(x-7\right)\left(x+3\right)
Factor out common term x-7 by using distributive property.
x^{2}-4x-21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-21\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-21\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+84}}{2}
Multiply -4 times -21.
x=\frac{-\left(-4\right)±\sqrt{100}}{2}
Add 16 to 84.
x=\frac{-\left(-4\right)±10}{2}
Take the square root of 100.
x=\frac{4±10}{2}
The opposite of -4 is 4.
x=\frac{14}{2}
Now solve the equation x=\frac{4±10}{2} when ± is plus. Add 4 to 10.
x=7
Divide 14 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{4±10}{2} when ± is minus. Subtract 10 from 4.
x=-3
Divide -6 by 2.
x^{2}-4x-21=\left(x-7\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and -3 for x_{2}.
x^{2}-4x-21=\left(x-7\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.