Factor
-q\left(4m-5\right)\left(5m+7\right)
Evaluate
-q\left(4m-5\right)\left(5m+7\right)
Share
Copied to clipboard
q\left(-20m^{2}-3m+35\right)
Factor out q.
a+b=-3 ab=-20\times 35=-700
Consider -20m^{2}-3m+35. Factor the expression by grouping. First, the expression needs to be rewritten as -20m^{2}+am+bm+35. To find a and b, set up a system to be solved.
1,-700 2,-350 4,-175 5,-140 7,-100 10,-70 14,-50 20,-35 25,-28
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -700.
1-700=-699 2-350=-348 4-175=-171 5-140=-135 7-100=-93 10-70=-60 14-50=-36 20-35=-15 25-28=-3
Calculate the sum for each pair.
a=25 b=-28
The solution is the pair that gives sum -3.
\left(-20m^{2}+25m\right)+\left(-28m+35\right)
Rewrite -20m^{2}-3m+35 as \left(-20m^{2}+25m\right)+\left(-28m+35\right).
-5m\left(4m-5\right)-7\left(4m-5\right)
Factor out -5m in the first and -7 in the second group.
\left(4m-5\right)\left(-5m-7\right)
Factor out common term 4m-5 by using distributive property.
q\left(4m-5\right)\left(-5m-7\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}