Solve for x
x=-\frac{5}{2}-\frac{35}{2y}
y\neq 0
Solve for y
y=-\frac{35}{2x+5}
x\neq -\frac{5}{2}
Graph
Share
Copied to clipboard
-2yx=35+5y
Add 5y to both sides.
\left(-2y\right)x=5y+35
The equation is in standard form.
\frac{\left(-2y\right)x}{-2y}=\frac{5y+35}{-2y}
Divide both sides by -2y.
x=\frac{5y+35}{-2y}
Dividing by -2y undoes the multiplication by -2y.
x=-\frac{5}{2}-\frac{35}{2y}
Divide 35+5y by -2y.
\left(-2x-5\right)y=35
Combine all terms containing y.
\frac{\left(-2x-5\right)y}{-2x-5}=\frac{35}{-2x-5}
Divide both sides by -2x-5.
y=\frac{35}{-2x-5}
Dividing by -2x-5 undoes the multiplication by -2x-5.
y=-\frac{35}{2x+5}
Divide 35 by -2x-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}