Evaluate
-\frac{2x\left(5x-3y+15\right)}{15}
Expand
\frac{2xy}{5}-\frac{2x^{2}}{3}-2x
Share
Copied to clipboard
-2x\times \frac{1}{3}x-2x\left(-\frac{1}{5}\right)y-2x
Use the distributive property to multiply -2x by \frac{1}{3}x-\frac{1}{5}y+1.
-2x^{2}\times \frac{1}{3}-2x\left(-\frac{1}{5}\right)y-2x
Multiply x and x to get x^{2}.
\frac{-2}{3}x^{2}-2x\left(-\frac{1}{5}\right)y-2x
Multiply -2 and \frac{1}{3} to get \frac{-2}{3}.
-\frac{2}{3}x^{2}-2x\left(-\frac{1}{5}\right)y-2x
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{2}{3}x^{2}+\frac{-2\left(-1\right)}{5}xy-2x
Express -2\left(-\frac{1}{5}\right) as a single fraction.
-\frac{2}{3}x^{2}+\frac{2}{5}xy-2x
Multiply -2 and -1 to get 2.
-2x\times \frac{1}{3}x-2x\left(-\frac{1}{5}\right)y-2x
Use the distributive property to multiply -2x by \frac{1}{3}x-\frac{1}{5}y+1.
-2x^{2}\times \frac{1}{3}-2x\left(-\frac{1}{5}\right)y-2x
Multiply x and x to get x^{2}.
\frac{-2}{3}x^{2}-2x\left(-\frac{1}{5}\right)y-2x
Multiply -2 and \frac{1}{3} to get \frac{-2}{3}.
-\frac{2}{3}x^{2}-2x\left(-\frac{1}{5}\right)y-2x
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{2}{3}x^{2}+\frac{-2\left(-1\right)}{5}xy-2x
Express -2\left(-\frac{1}{5}\right) as a single fraction.
-\frac{2}{3}x^{2}+\frac{2}{5}xy-2x
Multiply -2 and -1 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}