Solve for x
x=\frac{\sqrt{61}-7}{4}\approx 0.202562419
x=\frac{-\sqrt{61}-7}{4}\approx -3.702562419
Graph
Share
Copied to clipboard
-2x^{2}-7x=-1.5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}-7x-\left(-1.5\right)=-1.5-\left(-1.5\right)
Add 1.5 to both sides of the equation.
-2x^{2}-7x-\left(-1.5\right)=0
Subtracting -1.5 from itself leaves 0.
-2x^{2}-7x+1.5=0
Subtract -1.5 from 0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-2\right)\times 1.5}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -7 for b, and 1.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-2\right)\times 1.5}}{2\left(-2\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+8\times 1.5}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-7\right)±\sqrt{49+12}}{2\left(-2\right)}
Multiply 8 times 1.5.
x=\frac{-\left(-7\right)±\sqrt{61}}{2\left(-2\right)}
Add 49 to 12.
x=\frac{7±\sqrt{61}}{2\left(-2\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{61}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{61}+7}{-4}
Now solve the equation x=\frac{7±\sqrt{61}}{-4} when ± is plus. Add 7 to \sqrt{61}.
x=\frac{-\sqrt{61}-7}{4}
Divide 7+\sqrt{61} by -4.
x=\frac{7-\sqrt{61}}{-4}
Now solve the equation x=\frac{7±\sqrt{61}}{-4} when ± is minus. Subtract \sqrt{61} from 7.
x=\frac{\sqrt{61}-7}{4}
Divide 7-\sqrt{61} by -4.
x=\frac{-\sqrt{61}-7}{4} x=\frac{\sqrt{61}-7}{4}
The equation is now solved.
-2x^{2}-7x=-1.5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-7x}{-2}=-\frac{1.5}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{7}{-2}\right)x=-\frac{1.5}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{7}{2}x=-\frac{1.5}{-2}
Divide -7 by -2.
x^{2}+\frac{7}{2}x=0.75
Divide -1.5 by -2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=0.75+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=0.75+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{61}{16}
Add 0.75 to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{61}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{61}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{\sqrt{61}}{4} x+\frac{7}{4}=-\frac{\sqrt{61}}{4}
Simplify.
x=\frac{\sqrt{61}-7}{4} x=\frac{-\sqrt{61}-7}{4}
Subtract \frac{7}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}