Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(-2x^{2}-10x+8)
Add 5 and 3 to get 8.
-2x^{2}-10x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)\times 8}}{2\left(-2\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+8\times 8}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-10\right)±\sqrt{100+64}}{2\left(-2\right)}
Multiply 8 times 8.
x=\frac{-\left(-10\right)±\sqrt{164}}{2\left(-2\right)}
Add 100 to 64.
x=\frac{-\left(-10\right)±2\sqrt{41}}{2\left(-2\right)}
Take the square root of 164.
x=\frac{10±2\sqrt{41}}{2\left(-2\right)}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{41}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{41}+10}{-4}
Now solve the equation x=\frac{10±2\sqrt{41}}{-4} when ± is plus. Add 10 to 2\sqrt{41}.
x=\frac{-\sqrt{41}-5}{2}
Divide 10+2\sqrt{41} by -4.
x=\frac{10-2\sqrt{41}}{-4}
Now solve the equation x=\frac{10±2\sqrt{41}}{-4} when ± is minus. Subtract 2\sqrt{41} from 10.
x=\frac{\sqrt{41}-5}{2}
Divide 10-2\sqrt{41} by -4.
-2x^{2}-10x+8=-2\left(x-\frac{-\sqrt{41}-5}{2}\right)\left(x-\frac{\sqrt{41}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5-\sqrt{41}}{2} for x_{1} and \frac{-5+\sqrt{41}}{2} for x_{2}.
-2x^{2}-10x+8
Add 5 and 3 to get 8.