Solve for x
x=10
x = \frac{27}{2} = 13\frac{1}{2} = 13.5
Graph
Share
Copied to clipboard
-2x^{2}+47x+5-275=0
Subtract 275 from both sides.
-2x^{2}+47x-270=0
Subtract 275 from 5 to get -270.
a+b=47 ab=-2\left(-270\right)=540
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-270. To find a and b, set up a system to be solved.
1,540 2,270 3,180 4,135 5,108 6,90 9,60 10,54 12,45 15,36 18,30 20,27
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 540.
1+540=541 2+270=272 3+180=183 4+135=139 5+108=113 6+90=96 9+60=69 10+54=64 12+45=57 15+36=51 18+30=48 20+27=47
Calculate the sum for each pair.
a=27 b=20
The solution is the pair that gives sum 47.
\left(-2x^{2}+27x\right)+\left(20x-270\right)
Rewrite -2x^{2}+47x-270 as \left(-2x^{2}+27x\right)+\left(20x-270\right).
-x\left(2x-27\right)+10\left(2x-27\right)
Factor out -x in the first and 10 in the second group.
\left(2x-27\right)\left(-x+10\right)
Factor out common term 2x-27 by using distributive property.
x=\frac{27}{2} x=10
To find equation solutions, solve 2x-27=0 and -x+10=0.
-2x^{2}+47x+5=275
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+47x+5-275=275-275
Subtract 275 from both sides of the equation.
-2x^{2}+47x+5-275=0
Subtracting 275 from itself leaves 0.
-2x^{2}+47x-270=0
Subtract 275 from 5.
x=\frac{-47±\sqrt{47^{2}-4\left(-2\right)\left(-270\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 47 for b, and -270 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-47±\sqrt{2209-4\left(-2\right)\left(-270\right)}}{2\left(-2\right)}
Square 47.
x=\frac{-47±\sqrt{2209+8\left(-270\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-47±\sqrt{2209-2160}}{2\left(-2\right)}
Multiply 8 times -270.
x=\frac{-47±\sqrt{49}}{2\left(-2\right)}
Add 2209 to -2160.
x=\frac{-47±7}{2\left(-2\right)}
Take the square root of 49.
x=\frac{-47±7}{-4}
Multiply 2 times -2.
x=-\frac{40}{-4}
Now solve the equation x=\frac{-47±7}{-4} when ± is plus. Add -47 to 7.
x=10
Divide -40 by -4.
x=-\frac{54}{-4}
Now solve the equation x=\frac{-47±7}{-4} when ± is minus. Subtract 7 from -47.
x=\frac{27}{2}
Reduce the fraction \frac{-54}{-4} to lowest terms by extracting and canceling out 2.
x=10 x=\frac{27}{2}
The equation is now solved.
-2x^{2}+47x+5=275
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+47x+5-5=275-5
Subtract 5 from both sides of the equation.
-2x^{2}+47x=275-5
Subtracting 5 from itself leaves 0.
-2x^{2}+47x=270
Subtract 5 from 275.
\frac{-2x^{2}+47x}{-2}=\frac{270}{-2}
Divide both sides by -2.
x^{2}+\frac{47}{-2}x=\frac{270}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{47}{2}x=\frac{270}{-2}
Divide 47 by -2.
x^{2}-\frac{47}{2}x=-135
Divide 270 by -2.
x^{2}-\frac{47}{2}x+\left(-\frac{47}{4}\right)^{2}=-135+\left(-\frac{47}{4}\right)^{2}
Divide -\frac{47}{2}, the coefficient of the x term, by 2 to get -\frac{47}{4}. Then add the square of -\frac{47}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{47}{2}x+\frac{2209}{16}=-135+\frac{2209}{16}
Square -\frac{47}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{47}{2}x+\frac{2209}{16}=\frac{49}{16}
Add -135 to \frac{2209}{16}.
\left(x-\frac{47}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{47}{2}x+\frac{2209}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{47}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{47}{4}=\frac{7}{4} x-\frac{47}{4}=-\frac{7}{4}
Simplify.
x=\frac{27}{2} x=10
Add \frac{47}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}