Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+35x-143=0
Subtract 143 from both sides.
a+b=35 ab=-2\left(-143\right)=286
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-143. To find a and b, set up a system to be solved.
1,286 2,143 11,26 13,22
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 286.
1+286=287 2+143=145 11+26=37 13+22=35
Calculate the sum for each pair.
a=22 b=13
The solution is the pair that gives sum 35.
\left(-2x^{2}+22x\right)+\left(13x-143\right)
Rewrite -2x^{2}+35x-143 as \left(-2x^{2}+22x\right)+\left(13x-143\right).
2x\left(-x+11\right)-13\left(-x+11\right)
Factor out 2x in the first and -13 in the second group.
\left(-x+11\right)\left(2x-13\right)
Factor out common term -x+11 by using distributive property.
x=11 x=\frac{13}{2}
To find equation solutions, solve -x+11=0 and 2x-13=0.
-2x^{2}+35x=143
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+35x-143=143-143
Subtract 143 from both sides of the equation.
-2x^{2}+35x-143=0
Subtracting 143 from itself leaves 0.
x=\frac{-35±\sqrt{35^{2}-4\left(-2\right)\left(-143\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 35 for b, and -143 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\left(-2\right)\left(-143\right)}}{2\left(-2\right)}
Square 35.
x=\frac{-35±\sqrt{1225+8\left(-143\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-35±\sqrt{1225-1144}}{2\left(-2\right)}
Multiply 8 times -143.
x=\frac{-35±\sqrt{81}}{2\left(-2\right)}
Add 1225 to -1144.
x=\frac{-35±9}{2\left(-2\right)}
Take the square root of 81.
x=\frac{-35±9}{-4}
Multiply 2 times -2.
x=-\frac{26}{-4}
Now solve the equation x=\frac{-35±9}{-4} when ± is plus. Add -35 to 9.
x=\frac{13}{2}
Reduce the fraction \frac{-26}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{44}{-4}
Now solve the equation x=\frac{-35±9}{-4} when ± is minus. Subtract 9 from -35.
x=11
Divide -44 by -4.
x=\frac{13}{2} x=11
The equation is now solved.
-2x^{2}+35x=143
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+35x}{-2}=\frac{143}{-2}
Divide both sides by -2.
x^{2}+\frac{35}{-2}x=\frac{143}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{35}{2}x=\frac{143}{-2}
Divide 35 by -2.
x^{2}-\frac{35}{2}x=-\frac{143}{2}
Divide 143 by -2.
x^{2}-\frac{35}{2}x+\left(-\frac{35}{4}\right)^{2}=-\frac{143}{2}+\left(-\frac{35}{4}\right)^{2}
Divide -\frac{35}{2}, the coefficient of the x term, by 2 to get -\frac{35}{4}. Then add the square of -\frac{35}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=-\frac{143}{2}+\frac{1225}{16}
Square -\frac{35}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=\frac{81}{16}
Add -\frac{143}{2} to \frac{1225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}-\frac{35}{2}x+\frac{1225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x-\frac{35}{4}=\frac{9}{4} x-\frac{35}{4}=-\frac{9}{4}
Simplify.
x=11 x=\frac{13}{2}
Add \frac{35}{4} to both sides of the equation.