Solve for x (complex solution)
x=\frac{-\sqrt{759}i+29}{4}\approx 7.25-6.887488657i
x=\frac{29+\sqrt{759}i}{4}\approx 7.25+6.887488657i
Graph
Share
Copied to clipboard
-2x^{2}+29x=200
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+29x-200=200-200
Subtract 200 from both sides of the equation.
-2x^{2}+29x-200=0
Subtracting 200 from itself leaves 0.
x=\frac{-29±\sqrt{29^{2}-4\left(-2\right)\left(-200\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 29 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-29±\sqrt{841-4\left(-2\right)\left(-200\right)}}{2\left(-2\right)}
Square 29.
x=\frac{-29±\sqrt{841+8\left(-200\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-29±\sqrt{841-1600}}{2\left(-2\right)}
Multiply 8 times -200.
x=\frac{-29±\sqrt{-759}}{2\left(-2\right)}
Add 841 to -1600.
x=\frac{-29±\sqrt{759}i}{2\left(-2\right)}
Take the square root of -759.
x=\frac{-29±\sqrt{759}i}{-4}
Multiply 2 times -2.
x=\frac{-29+\sqrt{759}i}{-4}
Now solve the equation x=\frac{-29±\sqrt{759}i}{-4} when ± is plus. Add -29 to i\sqrt{759}.
x=\frac{-\sqrt{759}i+29}{4}
Divide -29+i\sqrt{759} by -4.
x=\frac{-\sqrt{759}i-29}{-4}
Now solve the equation x=\frac{-29±\sqrt{759}i}{-4} when ± is minus. Subtract i\sqrt{759} from -29.
x=\frac{29+\sqrt{759}i}{4}
Divide -29-i\sqrt{759} by -4.
x=\frac{-\sqrt{759}i+29}{4} x=\frac{29+\sqrt{759}i}{4}
The equation is now solved.
-2x^{2}+29x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+29x}{-2}=\frac{200}{-2}
Divide both sides by -2.
x^{2}+\frac{29}{-2}x=\frac{200}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{29}{2}x=\frac{200}{-2}
Divide 29 by -2.
x^{2}-\frac{29}{2}x=-100
Divide 200 by -2.
x^{2}-\frac{29}{2}x+\left(-\frac{29}{4}\right)^{2}=-100+\left(-\frac{29}{4}\right)^{2}
Divide -\frac{29}{2}, the coefficient of the x term, by 2 to get -\frac{29}{4}. Then add the square of -\frac{29}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{2}x+\frac{841}{16}=-100+\frac{841}{16}
Square -\frac{29}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{2}x+\frac{841}{16}=-\frac{759}{16}
Add -100 to \frac{841}{16}.
\left(x-\frac{29}{4}\right)^{2}=-\frac{759}{16}
Factor x^{2}-\frac{29}{2}x+\frac{841}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{4}\right)^{2}}=\sqrt{-\frac{759}{16}}
Take the square root of both sides of the equation.
x-\frac{29}{4}=\frac{\sqrt{759}i}{4} x-\frac{29}{4}=-\frac{\sqrt{759}i}{4}
Simplify.
x=\frac{29+\sqrt{759}i}{4} x=\frac{-\sqrt{759}i+29}{4}
Add \frac{29}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}