Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+220x-4800=800
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+220x-4800-800=800-800
Subtract 800 from both sides of the equation.
-2x^{2}+220x-4800-800=0
Subtracting 800 from itself leaves 0.
-2x^{2}+220x-5600=0
Subtract 800 from -4800.
x=\frac{-220±\sqrt{220^{2}-4\left(-2\right)\left(-5600\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 220 for b, and -5600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-220±\sqrt{48400-4\left(-2\right)\left(-5600\right)}}{2\left(-2\right)}
Square 220.
x=\frac{-220±\sqrt{48400+8\left(-5600\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-220±\sqrt{48400-44800}}{2\left(-2\right)}
Multiply 8 times -5600.
x=\frac{-220±\sqrt{3600}}{2\left(-2\right)}
Add 48400 to -44800.
x=\frac{-220±60}{2\left(-2\right)}
Take the square root of 3600.
x=\frac{-220±60}{-4}
Multiply 2 times -2.
x=-\frac{160}{-4}
Now solve the equation x=\frac{-220±60}{-4} when ± is plus. Add -220 to 60.
x=40
Divide -160 by -4.
x=-\frac{280}{-4}
Now solve the equation x=\frac{-220±60}{-4} when ± is minus. Subtract 60 from -220.
x=70
Divide -280 by -4.
x=40 x=70
The equation is now solved.
-2x^{2}+220x-4800=800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+220x-4800-\left(-4800\right)=800-\left(-4800\right)
Add 4800 to both sides of the equation.
-2x^{2}+220x=800-\left(-4800\right)
Subtracting -4800 from itself leaves 0.
-2x^{2}+220x=5600
Subtract -4800 from 800.
\frac{-2x^{2}+220x}{-2}=\frac{5600}{-2}
Divide both sides by -2.
x^{2}+\frac{220}{-2}x=\frac{5600}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-110x=\frac{5600}{-2}
Divide 220 by -2.
x^{2}-110x=-2800
Divide 5600 by -2.
x^{2}-110x+\left(-55\right)^{2}=-2800+\left(-55\right)^{2}
Divide -110, the coefficient of the x term, by 2 to get -55. Then add the square of -55 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-110x+3025=-2800+3025
Square -55.
x^{2}-110x+3025=225
Add -2800 to 3025.
\left(x-55\right)^{2}=225
Factor x^{2}-110x+3025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-55\right)^{2}}=\sqrt{225}
Take the square root of both sides of the equation.
x-55=15 x-55=-15
Simplify.
x=70 x=40
Add 55 to both sides of the equation.