Solve for x
x=\frac{\sqrt{119}}{14}+\frac{1}{2}\approx 1.279193722
x=-\frac{\sqrt{119}}{14}+\frac{1}{2}\approx -0.279193722
Graph
Share
Copied to clipboard
5x-9=14x^{2}-9x-14
Combine -2x and 7x to get 5x.
5x-9-14x^{2}=-9x-14
Subtract 14x^{2} from both sides.
5x-9-14x^{2}+9x=-14
Add 9x to both sides.
14x-9-14x^{2}=-14
Combine 5x and 9x to get 14x.
14x-9-14x^{2}+14=0
Add 14 to both sides.
14x+5-14x^{2}=0
Add -9 and 14 to get 5.
-14x^{2}+14x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\left(-14\right)\times 5}}{2\left(-14\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -14 for a, 14 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-14\right)\times 5}}{2\left(-14\right)}
Square 14.
x=\frac{-14±\sqrt{196+56\times 5}}{2\left(-14\right)}
Multiply -4 times -14.
x=\frac{-14±\sqrt{196+280}}{2\left(-14\right)}
Multiply 56 times 5.
x=\frac{-14±\sqrt{476}}{2\left(-14\right)}
Add 196 to 280.
x=\frac{-14±2\sqrt{119}}{2\left(-14\right)}
Take the square root of 476.
x=\frac{-14±2\sqrt{119}}{-28}
Multiply 2 times -14.
x=\frac{2\sqrt{119}-14}{-28}
Now solve the equation x=\frac{-14±2\sqrt{119}}{-28} when ± is plus. Add -14 to 2\sqrt{119}.
x=-\frac{\sqrt{119}}{14}+\frac{1}{2}
Divide -14+2\sqrt{119} by -28.
x=\frac{-2\sqrt{119}-14}{-28}
Now solve the equation x=\frac{-14±2\sqrt{119}}{-28} when ± is minus. Subtract 2\sqrt{119} from -14.
x=\frac{\sqrt{119}}{14}+\frac{1}{2}
Divide -14-2\sqrt{119} by -28.
x=-\frac{\sqrt{119}}{14}+\frac{1}{2} x=\frac{\sqrt{119}}{14}+\frac{1}{2}
The equation is now solved.
5x-9=14x^{2}-9x-14
Combine -2x and 7x to get 5x.
5x-9-14x^{2}=-9x-14
Subtract 14x^{2} from both sides.
5x-9-14x^{2}+9x=-14
Add 9x to both sides.
14x-9-14x^{2}=-14
Combine 5x and 9x to get 14x.
14x-14x^{2}=-14+9
Add 9 to both sides.
14x-14x^{2}=-5
Add -14 and 9 to get -5.
-14x^{2}+14x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-14x^{2}+14x}{-14}=-\frac{5}{-14}
Divide both sides by -14.
x^{2}+\frac{14}{-14}x=-\frac{5}{-14}
Dividing by -14 undoes the multiplication by -14.
x^{2}-x=-\frac{5}{-14}
Divide 14 by -14.
x^{2}-x=\frac{5}{14}
Divide -5 by -14.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{5}{14}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{5}{14}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{17}{28}
Add \frac{5}{14} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{17}{28}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{28}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{119}}{14} x-\frac{1}{2}=-\frac{\sqrt{119}}{14}
Simplify.
x=\frac{\sqrt{119}}{14}+\frac{1}{2} x=-\frac{\sqrt{119}}{14}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}