Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

-2v^{2}+32v=70
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2v^{2}+32v-70=70-70
Subtract 70 from both sides of the equation.
-2v^{2}+32v-70=0
Subtracting 70 from itself leaves 0.
v=\frac{-32±\sqrt{32^{2}-4\left(-2\right)\left(-70\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 32 for b, and -70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-32±\sqrt{1024-4\left(-2\right)\left(-70\right)}}{2\left(-2\right)}
Square 32.
v=\frac{-32±\sqrt{1024+8\left(-70\right)}}{2\left(-2\right)}
Multiply -4 times -2.
v=\frac{-32±\sqrt{1024-560}}{2\left(-2\right)}
Multiply 8 times -70.
v=\frac{-32±\sqrt{464}}{2\left(-2\right)}
Add 1024 to -560.
v=\frac{-32±4\sqrt{29}}{2\left(-2\right)}
Take the square root of 464.
v=\frac{-32±4\sqrt{29}}{-4}
Multiply 2 times -2.
v=\frac{4\sqrt{29}-32}{-4}
Now solve the equation v=\frac{-32±4\sqrt{29}}{-4} when ± is plus. Add -32 to 4\sqrt{29}.
v=8-\sqrt{29}
Divide -32+4\sqrt{29} by -4.
v=\frac{-4\sqrt{29}-32}{-4}
Now solve the equation v=\frac{-32±4\sqrt{29}}{-4} when ± is minus. Subtract 4\sqrt{29} from -32.
v=\sqrt{29}+8
Divide -32-4\sqrt{29} by -4.
v=8-\sqrt{29} v=\sqrt{29}+8
The equation is now solved.
-2v^{2}+32v=70
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2v^{2}+32v}{-2}=\frac{70}{-2}
Divide both sides by -2.
v^{2}+\frac{32}{-2}v=\frac{70}{-2}
Dividing by -2 undoes the multiplication by -2.
v^{2}-16v=\frac{70}{-2}
Divide 32 by -2.
v^{2}-16v=-35
Divide 70 by -2.
v^{2}-16v+\left(-8\right)^{2}=-35+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-16v+64=-35+64
Square -8.
v^{2}-16v+64=29
Add -35 to 64.
\left(v-8\right)^{2}=29
Factor v^{2}-16v+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-8\right)^{2}}=\sqrt{29}
Take the square root of both sides of the equation.
v-8=\sqrt{29} v-8=-\sqrt{29}
Simplify.
v=\sqrt{29}+8 v=8-\sqrt{29}
Add 8 to both sides of the equation.