Solve for l
l=\frac{\sqrt{2}}{2}+3\approx 3.707106781
l=-\frac{\sqrt{2}}{2}+3\approx 2.292893219
Share
Copied to clipboard
-2l^{2}+12l=17
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2l^{2}+12l-17=17-17
Subtract 17 from both sides of the equation.
-2l^{2}+12l-17=0
Subtracting 17 from itself leaves 0.
l=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\left(-17\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 12 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
l=\frac{-12±\sqrt{144-4\left(-2\right)\left(-17\right)}}{2\left(-2\right)}
Square 12.
l=\frac{-12±\sqrt{144+8\left(-17\right)}}{2\left(-2\right)}
Multiply -4 times -2.
l=\frac{-12±\sqrt{144-136}}{2\left(-2\right)}
Multiply 8 times -17.
l=\frac{-12±\sqrt{8}}{2\left(-2\right)}
Add 144 to -136.
l=\frac{-12±2\sqrt{2}}{2\left(-2\right)}
Take the square root of 8.
l=\frac{-12±2\sqrt{2}}{-4}
Multiply 2 times -2.
l=\frac{2\sqrt{2}-12}{-4}
Now solve the equation l=\frac{-12±2\sqrt{2}}{-4} when ± is plus. Add -12 to 2\sqrt{2}.
l=-\frac{\sqrt{2}}{2}+3
Divide -12+2\sqrt{2} by -4.
l=\frac{-2\sqrt{2}-12}{-4}
Now solve the equation l=\frac{-12±2\sqrt{2}}{-4} when ± is minus. Subtract 2\sqrt{2} from -12.
l=\frac{\sqrt{2}}{2}+3
Divide -12-2\sqrt{2} by -4.
l=-\frac{\sqrt{2}}{2}+3 l=\frac{\sqrt{2}}{2}+3
The equation is now solved.
-2l^{2}+12l=17
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2l^{2}+12l}{-2}=\frac{17}{-2}
Divide both sides by -2.
l^{2}+\frac{12}{-2}l=\frac{17}{-2}
Dividing by -2 undoes the multiplication by -2.
l^{2}-6l=\frac{17}{-2}
Divide 12 by -2.
l^{2}-6l=-\frac{17}{2}
Divide 17 by -2.
l^{2}-6l+\left(-3\right)^{2}=-\frac{17}{2}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
l^{2}-6l+9=-\frac{17}{2}+9
Square -3.
l^{2}-6l+9=\frac{1}{2}
Add -\frac{17}{2} to 9.
\left(l-3\right)^{2}=\frac{1}{2}
Factor l^{2}-6l+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(l-3\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
l-3=\frac{\sqrt{2}}{2} l-3=-\frac{\sqrt{2}}{2}
Simplify.
l=\frac{\sqrt{2}}{2}+3 l=-\frac{\sqrt{2}}{2}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}