Factor
\left(3-a\right)\left(2a-3\right)
Evaluate
\left(3-a\right)\left(2a-3\right)
Share
Copied to clipboard
p+q=9 pq=-2\left(-9\right)=18
Factor the expression by grouping. First, the expression needs to be rewritten as -2a^{2}+pa+qa-9. To find p and q, set up a system to be solved.
1,18 2,9 3,6
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
p=6 q=3
The solution is the pair that gives sum 9.
\left(-2a^{2}+6a\right)+\left(3a-9\right)
Rewrite -2a^{2}+9a-9 as \left(-2a^{2}+6a\right)+\left(3a-9\right).
2a\left(-a+3\right)-3\left(-a+3\right)
Factor out 2a in the first and -3 in the second group.
\left(-a+3\right)\left(2a-3\right)
Factor out common term -a+3 by using distributive property.
-2a^{2}+9a-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-9±\sqrt{9^{2}-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-9±\sqrt{81-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
Square 9.
a=\frac{-9±\sqrt{81+8\left(-9\right)}}{2\left(-2\right)}
Multiply -4 times -2.
a=\frac{-9±\sqrt{81-72}}{2\left(-2\right)}
Multiply 8 times -9.
a=\frac{-9±\sqrt{9}}{2\left(-2\right)}
Add 81 to -72.
a=\frac{-9±3}{2\left(-2\right)}
Take the square root of 9.
a=\frac{-9±3}{-4}
Multiply 2 times -2.
a=-\frac{6}{-4}
Now solve the equation a=\frac{-9±3}{-4} when ± is plus. Add -9 to 3.
a=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out 2.
a=-\frac{12}{-4}
Now solve the equation a=\frac{-9±3}{-4} when ± is minus. Subtract 3 from -9.
a=3
Divide -12 by -4.
-2a^{2}+9a-9=-2\left(a-\frac{3}{2}\right)\left(a-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and 3 for x_{2}.
-2a^{2}+9a-9=-2\times \frac{-2a+3}{-2}\left(a-3\right)
Subtract \frac{3}{2} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-2a^{2}+9a-9=\left(-2a+3\right)\left(a-3\right)
Cancel out 2, the greatest common factor in -2 and 2.
x ^ 2 -\frac{9}{2}x +\frac{9}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{9}{2} rs = \frac{9}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{4} - u s = \frac{9}{4} + u
Two numbers r and s sum up to \frac{9}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{9}{2} = \frac{9}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{4} - u) (\frac{9}{4} + u) = \frac{9}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9}{2}
\frac{81}{16} - u^2 = \frac{9}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9}{2}-\frac{81}{16} = -\frac{9}{16}
Simplify the expression by subtracting \frac{81}{16} on both sides
u^2 = \frac{9}{16} u = \pm\sqrt{\frac{9}{16}} = \pm \frac{3}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{4} - \frac{3}{4} = 1.500 s = \frac{9}{4} + \frac{3}{4} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}