Solve for a
a=-4
Share
Copied to clipboard
-6-\left(-4-a\right)=3a+6
Multiply both sides of the equation by 3.
-6-\left(-4\right)-\left(-a\right)=3a+6
To find the opposite of -4-a, find the opposite of each term.
-6+4-\left(-a\right)=3a+6
The opposite of -4 is 4.
-6+4+a=3a+6
The opposite of -a is a.
-2+a=3a+6
Add -6 and 4 to get -2.
-2+a-3a=6
Subtract 3a from both sides.
-2-2a=6
Combine a and -3a to get -2a.
-2a=6+2
Add 2 to both sides.
-2a=8
Add 6 and 2 to get 8.
a=\frac{8}{-2}
Divide both sides by -2.
a=-4
Divide 8 by -2 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}