Solve for x
x = -\frac{25}{3} = -8\frac{1}{3} \approx -8.333333333
Graph
Share
Copied to clipboard
-2x+2+3\left(4-x\right)=2\left(x-3\right)-5\left(2x+1\right)
Use the distributive property to multiply -2 by x-1.
-2x+2+12-3x=2\left(x-3\right)-5\left(2x+1\right)
Use the distributive property to multiply 3 by 4-x.
-2x+14-3x=2\left(x-3\right)-5\left(2x+1\right)
Add 2 and 12 to get 14.
-5x+14=2\left(x-3\right)-5\left(2x+1\right)
Combine -2x and -3x to get -5x.
-5x+14=2x-6-5\left(2x+1\right)
Use the distributive property to multiply 2 by x-3.
-5x+14=2x-6-10x-5
Use the distributive property to multiply -5 by 2x+1.
-5x+14=-8x-6-5
Combine 2x and -10x to get -8x.
-5x+14=-8x-11
Subtract 5 from -6 to get -11.
-5x+14+8x=-11
Add 8x to both sides.
3x+14=-11
Combine -5x and 8x to get 3x.
3x=-11-14
Subtract 14 from both sides.
3x=-25
Subtract 14 from -11 to get -25.
x=\frac{-25}{3}
Divide both sides by 3.
x=-\frac{25}{3}
Fraction \frac{-25}{3} can be rewritten as -\frac{25}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}