Solve for p
p=-1
Share
Copied to clipboard
-12-14p-7\left(p+7\right)=-40
Use the distributive property to multiply -2 by 6+7p.
-12-14p-7p-49=-40
Use the distributive property to multiply -7 by p+7.
-12-21p-49=-40
Combine -14p and -7p to get -21p.
-61-21p=-40
Subtract 49 from -12 to get -61.
-21p=-40+61
Add 61 to both sides.
-21p=21
Add -40 and 61 to get 21.
p=\frac{21}{-21}
Divide both sides by -21.
p=-1
Divide 21 by -21 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}