Solve for x
x = \frac{25}{2} = 12\frac{1}{2} = 12.5
Graph
Share
Copied to clipboard
-2\left(4x-2-3\right)=-2\left(6x+7\right)-2\left(-3x-3\right)-7
Use the distributive property to multiply 2 by 2x-1.
-2\left(4x-5\right)=-2\left(6x+7\right)-2\left(-3x-3\right)-7
Subtract 3 from -2 to get -5.
-8x+10=-2\left(6x+7\right)-2\left(-3x-3\right)-7
Use the distributive property to multiply -2 by 4x-5.
-8x+10=-12x-14-2\left(-3x-3\right)-7
Use the distributive property to multiply -2 by 6x+7.
-8x+10=-12x-14+6x+6-7
Use the distributive property to multiply -2 by -3x-3.
-8x+10=-6x-14+6-7
Combine -12x and 6x to get -6x.
-8x+10=-6x-8-7
Add -14 and 6 to get -8.
-8x+10=-6x-15
Subtract 7 from -8 to get -15.
-8x+10+6x=-15
Add 6x to both sides.
-2x+10=-15
Combine -8x and 6x to get -2x.
-2x=-15-10
Subtract 10 from both sides.
-2x=-25
Subtract 10 from -15 to get -25.
x=\frac{-25}{-2}
Divide both sides by -2.
x=\frac{25}{2}
Fraction \frac{-25}{-2} can be simplified to \frac{25}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}