Solve for r
r=-\frac{1}{2}=-0.5
Share
Copied to clipboard
r\left(-2\right)+1=2r+3
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by r.
r\left(-2\right)+1-2r=3
Subtract 2r from both sides.
-4r+1=3
Combine r\left(-2\right) and -2r to get -4r.
-4r=3-1
Subtract 1 from both sides.
-4r=2
Subtract 1 from 3 to get 2.
r=\frac{2}{-4}
Divide both sides by -4.
r=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}