Solve for x
x=\frac{1}{6}\approx 0.166666667
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
-18x^{2}+27x=4
Add 27x to both sides.
-18x^{2}+27x-4=0
Subtract 4 from both sides.
a+b=27 ab=-18\left(-4\right)=72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -18x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,72 2,36 3,24 4,18 6,12 8,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Calculate the sum for each pair.
a=24 b=3
The solution is the pair that gives sum 27.
\left(-18x^{2}+24x\right)+\left(3x-4\right)
Rewrite -18x^{2}+27x-4 as \left(-18x^{2}+24x\right)+\left(3x-4\right).
-6x\left(3x-4\right)+3x-4
Factor out -6x in -18x^{2}+24x.
\left(3x-4\right)\left(-6x+1\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=\frac{1}{6}
To find equation solutions, solve 3x-4=0 and -6x+1=0.
-18x^{2}+27x=4
Add 27x to both sides.
-18x^{2}+27x-4=0
Subtract 4 from both sides.
x=\frac{-27±\sqrt{27^{2}-4\left(-18\right)\left(-4\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 27 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-18\right)\left(-4\right)}}{2\left(-18\right)}
Square 27.
x=\frac{-27±\sqrt{729+72\left(-4\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-27±\sqrt{729-288}}{2\left(-18\right)}
Multiply 72 times -4.
x=\frac{-27±\sqrt{441}}{2\left(-18\right)}
Add 729 to -288.
x=\frac{-27±21}{2\left(-18\right)}
Take the square root of 441.
x=\frac{-27±21}{-36}
Multiply 2 times -18.
x=-\frac{6}{-36}
Now solve the equation x=\frac{-27±21}{-36} when ± is plus. Add -27 to 21.
x=\frac{1}{6}
Reduce the fraction \frac{-6}{-36} to lowest terms by extracting and canceling out 6.
x=-\frac{48}{-36}
Now solve the equation x=\frac{-27±21}{-36} when ± is minus. Subtract 21 from -27.
x=\frac{4}{3}
Reduce the fraction \frac{-48}{-36} to lowest terms by extracting and canceling out 12.
x=\frac{1}{6} x=\frac{4}{3}
The equation is now solved.
-18x^{2}+27x=4
Add 27x to both sides.
\frac{-18x^{2}+27x}{-18}=\frac{4}{-18}
Divide both sides by -18.
x^{2}+\frac{27}{-18}x=\frac{4}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{3}{2}x=\frac{4}{-18}
Reduce the fraction \frac{27}{-18} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{3}{2}x=-\frac{2}{9}
Reduce the fraction \frac{4}{-18} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{2}{9}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{2}{9}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{144}
Add -\frac{2}{9} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{144}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{144}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{7}{12} x-\frac{3}{4}=-\frac{7}{12}
Simplify.
x=\frac{4}{3} x=\frac{1}{6}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}