Evaluate
9a^{2}
Differentiate w.r.t. a
18a
Share
Copied to clipboard
\frac{-3a}{-b}\times 3ab
Cancel out 6ab in both numerator and denominator.
\frac{3a}{b}\times 3ab
Cancel out -1 in both numerator and denominator.
\frac{3a\times 3}{b}ab
Express \frac{3a}{b}\times 3 as a single fraction.
\frac{3a\times 3a}{b}b
Express \frac{3a\times 3}{b}a as a single fraction.
3a\times 3a
Cancel out b and b.
3a^{2}\times 3
Multiply a and a to get a^{2}.
9a^{2}
Multiply 3 and 3 to get 9.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-3a}{-b}\times 3ab)
Cancel out 6ab in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3a}{b}\times 3ab)
Cancel out -1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3a\times 3}{b}ab)
Express \frac{3a}{b}\times 3 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3a\times 3a}{b}b)
Express \frac{3a\times 3}{b}a as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(3a\times 3a)
Cancel out b and b.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{2}\times 3)
Multiply a and a to get a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(9a^{2})
Multiply 3 and 3 to get 9.
2\times 9a^{2-1}
The derivative of ax^{n} is nax^{n-1}.
18a^{2-1}
Multiply 2 times 9.
18a^{1}
Subtract 1 from 2.
18a
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}