Solve for x
x = -\frac{35}{8} = -4\frac{3}{8} = -4.375
x=0
Graph
Share
Copied to clipboard
-16x+x^{3}-4x-2x^{2}+8-3x=\left(x+2\right)\left(x^{2}+4x+4\right)
Use the distributive property to multiply x-2 by x^{2}-4.
-20x+x^{3}-2x^{2}+8-3x=\left(x+2\right)\left(x^{2}+4x+4\right)
Combine -16x and -4x to get -20x.
-23x+x^{3}-2x^{2}+8=\left(x+2\right)\left(x^{2}+4x+4\right)
Combine -20x and -3x to get -23x.
-23x+x^{3}-2x^{2}+8=x^{3}+6x^{2}+12x+8
Use the distributive property to multiply x+2 by x^{2}+4x+4 and combine like terms.
-23x+x^{3}-2x^{2}+8-x^{3}=6x^{2}+12x+8
Subtract x^{3} from both sides.
-23x-2x^{2}+8=6x^{2}+12x+8
Combine x^{3} and -x^{3} to get 0.
-23x-2x^{2}+8-6x^{2}=12x+8
Subtract 6x^{2} from both sides.
-23x-8x^{2}+8=12x+8
Combine -2x^{2} and -6x^{2} to get -8x^{2}.
-23x-8x^{2}+8-12x=8
Subtract 12x from both sides.
-35x-8x^{2}+8=8
Combine -23x and -12x to get -35x.
-35x-8x^{2}+8-8=0
Subtract 8 from both sides.
-35x-8x^{2}=0
Subtract 8 from 8 to get 0.
x\left(-35-8x\right)=0
Factor out x.
x=0 x=-\frac{35}{8}
To find equation solutions, solve x=0 and -35-8x=0.
-16x+x^{3}-4x-2x^{2}+8-3x=\left(x+2\right)\left(x^{2}+4x+4\right)
Use the distributive property to multiply x-2 by x^{2}-4.
-20x+x^{3}-2x^{2}+8-3x=\left(x+2\right)\left(x^{2}+4x+4\right)
Combine -16x and -4x to get -20x.
-23x+x^{3}-2x^{2}+8=\left(x+2\right)\left(x^{2}+4x+4\right)
Combine -20x and -3x to get -23x.
-23x+x^{3}-2x^{2}+8=x^{3}+6x^{2}+12x+8
Use the distributive property to multiply x+2 by x^{2}+4x+4 and combine like terms.
-23x+x^{3}-2x^{2}+8-x^{3}=6x^{2}+12x+8
Subtract x^{3} from both sides.
-23x-2x^{2}+8=6x^{2}+12x+8
Combine x^{3} and -x^{3} to get 0.
-23x-2x^{2}+8-6x^{2}=12x+8
Subtract 6x^{2} from both sides.
-23x-8x^{2}+8=12x+8
Combine -2x^{2} and -6x^{2} to get -8x^{2}.
-23x-8x^{2}+8-12x=8
Subtract 12x from both sides.
-35x-8x^{2}+8=8
Combine -23x and -12x to get -35x.
-35x-8x^{2}+8-8=0
Subtract 8 from both sides.
-35x-8x^{2}=0
Subtract 8 from 8 to get 0.
-8x^{2}-35x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, -35 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±35}{2\left(-8\right)}
Take the square root of \left(-35\right)^{2}.
x=\frac{35±35}{2\left(-8\right)}
The opposite of -35 is 35.
x=\frac{35±35}{-16}
Multiply 2 times -8.
x=\frac{70}{-16}
Now solve the equation x=\frac{35±35}{-16} when ± is plus. Add 35 to 35.
x=-\frac{35}{8}
Reduce the fraction \frac{70}{-16} to lowest terms by extracting and canceling out 2.
x=\frac{0}{-16}
Now solve the equation x=\frac{35±35}{-16} when ± is minus. Subtract 35 from 35.
x=0
Divide 0 by -16.
x=-\frac{35}{8} x=0
The equation is now solved.
-16x+x^{3}-4x-2x^{2}+8-3x=\left(x+2\right)\left(x^{2}+4x+4\right)
Use the distributive property to multiply x-2 by x^{2}-4.
-20x+x^{3}-2x^{2}+8-3x=\left(x+2\right)\left(x^{2}+4x+4\right)
Combine -16x and -4x to get -20x.
-23x+x^{3}-2x^{2}+8=\left(x+2\right)\left(x^{2}+4x+4\right)
Combine -20x and -3x to get -23x.
-23x+x^{3}-2x^{2}+8=x^{3}+6x^{2}+12x+8
Use the distributive property to multiply x+2 by x^{2}+4x+4 and combine like terms.
-23x+x^{3}-2x^{2}+8-x^{3}=6x^{2}+12x+8
Subtract x^{3} from both sides.
-23x-2x^{2}+8=6x^{2}+12x+8
Combine x^{3} and -x^{3} to get 0.
-23x-2x^{2}+8-6x^{2}=12x+8
Subtract 6x^{2} from both sides.
-23x-8x^{2}+8=12x+8
Combine -2x^{2} and -6x^{2} to get -8x^{2}.
-23x-8x^{2}+8-12x=8
Subtract 12x from both sides.
-35x-8x^{2}+8=8
Combine -23x and -12x to get -35x.
-35x-8x^{2}=8-8
Subtract 8 from both sides.
-35x-8x^{2}=0
Subtract 8 from 8 to get 0.
-8x^{2}-35x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}-35x}{-8}=\frac{0}{-8}
Divide both sides by -8.
x^{2}+\left(-\frac{35}{-8}\right)x=\frac{0}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}+\frac{35}{8}x=\frac{0}{-8}
Divide -35 by -8.
x^{2}+\frac{35}{8}x=0
Divide 0 by -8.
x^{2}+\frac{35}{8}x+\left(\frac{35}{16}\right)^{2}=\left(\frac{35}{16}\right)^{2}
Divide \frac{35}{8}, the coefficient of the x term, by 2 to get \frac{35}{16}. Then add the square of \frac{35}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{35}{8}x+\frac{1225}{256}=\frac{1225}{256}
Square \frac{35}{16} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{35}{16}\right)^{2}=\frac{1225}{256}
Factor x^{2}+\frac{35}{8}x+\frac{1225}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{35}{16}\right)^{2}}=\sqrt{\frac{1225}{256}}
Take the square root of both sides of the equation.
x+\frac{35}{16}=\frac{35}{16} x+\frac{35}{16}=-\frac{35}{16}
Simplify.
x=0 x=-\frac{35}{8}
Subtract \frac{35}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}