Solve for r
r=-\frac{\sqrt{2}i}{4}\approx -0-0.353553391i
r=\frac{\sqrt{2}i}{4}\approx 0.353553391i
Share
Copied to clipboard
-16r^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
r^{2}=\frac{2}{-16}
Divide both sides by -16.
r^{2}=-\frac{1}{8}
Reduce the fraction \frac{2}{-16} to lowest terms by extracting and canceling out 2.
r=\frac{\sqrt{2}i}{4} r=-\frac{\sqrt{2}i}{4}
The equation is now solved.
-16r^{2}-2=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
r=\frac{0±\sqrt{0^{2}-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
Square 0.
r=\frac{0±\sqrt{64\left(-2\right)}}{2\left(-16\right)}
Multiply -4 times -16.
r=\frac{0±\sqrt{-128}}{2\left(-16\right)}
Multiply 64 times -2.
r=\frac{0±8\sqrt{2}i}{2\left(-16\right)}
Take the square root of -128.
r=\frac{0±8\sqrt{2}i}{-32}
Multiply 2 times -16.
r=-\frac{\sqrt{2}i}{4}
Now solve the equation r=\frac{0±8\sqrt{2}i}{-32} when ± is plus.
r=\frac{\sqrt{2}i}{4}
Now solve the equation r=\frac{0±8\sqrt{2}i}{-32} when ± is minus.
r=-\frac{\sqrt{2}i}{4} r=\frac{\sqrt{2}i}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}