Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

-16r^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
r^{2}=\frac{2}{-16}
Divide both sides by -16.
r^{2}=-\frac{1}{8}
Reduce the fraction \frac{2}{-16} to lowest terms by extracting and canceling out 2.
r=\frac{\sqrt{2}i}{4} r=-\frac{\sqrt{2}i}{4}
The equation is now solved.
-16r^{2}-2=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
r=\frac{0±\sqrt{0^{2}-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
Square 0.
r=\frac{0±\sqrt{64\left(-2\right)}}{2\left(-16\right)}
Multiply -4 times -16.
r=\frac{0±\sqrt{-128}}{2\left(-16\right)}
Multiply 64 times -2.
r=\frac{0±8\sqrt{2}i}{2\left(-16\right)}
Take the square root of -128.
r=\frac{0±8\sqrt{2}i}{-32}
Multiply 2 times -16.
r=-\frac{\sqrt{2}i}{4}
Now solve the equation r=\frac{0±8\sqrt{2}i}{-32} when ± is plus.
r=\frac{\sqrt{2}i}{4}
Now solve the equation r=\frac{0±8\sqrt{2}i}{-32} when ± is minus.
r=-\frac{\sqrt{2}i}{4} r=\frac{\sqrt{2}i}{4}
The equation is now solved.