Solve for K
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74}\approx 0.293937844
K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}\approx -0.050694601
Share
Copied to clipboard
148K^{2}-36K-\frac{247}{112}=0
Combine -16K^{2} and 164K^{2} to get 148K^{2}.
K=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 148\left(-\frac{247}{112}\right)}}{2\times 148}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 148 for a, -36 for b, and -\frac{247}{112} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
K=\frac{-\left(-36\right)±\sqrt{1296-4\times 148\left(-\frac{247}{112}\right)}}{2\times 148}
Square -36.
K=\frac{-\left(-36\right)±\sqrt{1296-592\left(-\frac{247}{112}\right)}}{2\times 148}
Multiply -4 times 148.
K=\frac{-\left(-36\right)±\sqrt{1296+\frac{9139}{7}}}{2\times 148}
Multiply -592 times -\frac{247}{112}.
K=\frac{-\left(-36\right)±\sqrt{\frac{18211}{7}}}{2\times 148}
Add 1296 to \frac{9139}{7}.
K=\frac{-\left(-36\right)±\frac{\sqrt{127477}}{7}}{2\times 148}
Take the square root of \frac{18211}{7}.
K=\frac{36±\frac{\sqrt{127477}}{7}}{2\times 148}
The opposite of -36 is 36.
K=\frac{36±\frac{\sqrt{127477}}{7}}{296}
Multiply 2 times 148.
K=\frac{\frac{\sqrt{127477}}{7}+36}{296}
Now solve the equation K=\frac{36±\frac{\sqrt{127477}}{7}}{296} when ± is plus. Add 36 to \frac{\sqrt{127477}}{7}.
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74}
Divide 36+\frac{\sqrt{127477}}{7} by 296.
K=\frac{-\frac{\sqrt{127477}}{7}+36}{296}
Now solve the equation K=\frac{36±\frac{\sqrt{127477}}{7}}{296} when ± is minus. Subtract \frac{\sqrt{127477}}{7} from 36.
K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}
Divide 36-\frac{\sqrt{127477}}{7} by 296.
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74} K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}
The equation is now solved.
148K^{2}-36K-\frac{247}{112}=0
Combine -16K^{2} and 164K^{2} to get 148K^{2}.
148K^{2}-36K=\frac{247}{112}
Add \frac{247}{112} to both sides. Anything plus zero gives itself.
\frac{148K^{2}-36K}{148}=\frac{\frac{247}{112}}{148}
Divide both sides by 148.
K^{2}+\left(-\frac{36}{148}\right)K=\frac{\frac{247}{112}}{148}
Dividing by 148 undoes the multiplication by 148.
K^{2}-\frac{9}{37}K=\frac{\frac{247}{112}}{148}
Reduce the fraction \frac{-36}{148} to lowest terms by extracting and canceling out 4.
K^{2}-\frac{9}{37}K=\frac{247}{16576}
Divide \frac{247}{112} by 148.
K^{2}-\frac{9}{37}K+\left(-\frac{9}{74}\right)^{2}=\frac{247}{16576}+\left(-\frac{9}{74}\right)^{2}
Divide -\frac{9}{37}, the coefficient of the x term, by 2 to get -\frac{9}{74}. Then add the square of -\frac{9}{74} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
K^{2}-\frac{9}{37}K+\frac{81}{5476}=\frac{247}{16576}+\frac{81}{5476}
Square -\frac{9}{74} by squaring both the numerator and the denominator of the fraction.
K^{2}-\frac{9}{37}K+\frac{81}{5476}=\frac{18211}{613312}
Add \frac{247}{16576} to \frac{81}{5476} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(K-\frac{9}{74}\right)^{2}=\frac{18211}{613312}
Factor K^{2}-\frac{9}{37}K+\frac{81}{5476}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(K-\frac{9}{74}\right)^{2}}=\sqrt{\frac{18211}{613312}}
Take the square root of both sides of the equation.
K-\frac{9}{74}=\frac{\sqrt{127477}}{2072} K-\frac{9}{74}=-\frac{\sqrt{127477}}{2072}
Simplify.
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74} K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}
Add \frac{9}{74} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}