Factor
-\left(9x-4\right)^{2}
Evaluate
-\left(9x-4\right)^{2}
Graph
Share
Copied to clipboard
-81x^{2}+72x-16
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=72 ab=-81\left(-16\right)=1296
Factor the expression by grouping. First, the expression needs to be rewritten as -81x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
1,1296 2,648 3,432 4,324 6,216 8,162 9,144 12,108 16,81 18,72 24,54 27,48 36,36
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 1296.
1+1296=1297 2+648=650 3+432=435 4+324=328 6+216=222 8+162=170 9+144=153 12+108=120 16+81=97 18+72=90 24+54=78 27+48=75 36+36=72
Calculate the sum for each pair.
a=36 b=36
The solution is the pair that gives sum 72.
\left(-81x^{2}+36x\right)+\left(36x-16\right)
Rewrite -81x^{2}+72x-16 as \left(-81x^{2}+36x\right)+\left(36x-16\right).
-9x\left(9x-4\right)+4\left(9x-4\right)
Factor out -9x in the first and 4 in the second group.
\left(9x-4\right)\left(-9x+4\right)
Factor out common term 9x-4 by using distributive property.
-81x^{2}+72x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-72±\sqrt{72^{2}-4\left(-81\right)\left(-16\right)}}{2\left(-81\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±\sqrt{5184-4\left(-81\right)\left(-16\right)}}{2\left(-81\right)}
Square 72.
x=\frac{-72±\sqrt{5184+324\left(-16\right)}}{2\left(-81\right)}
Multiply -4 times -81.
x=\frac{-72±\sqrt{5184-5184}}{2\left(-81\right)}
Multiply 324 times -16.
x=\frac{-72±\sqrt{0}}{2\left(-81\right)}
Add 5184 to -5184.
x=\frac{-72±0}{2\left(-81\right)}
Take the square root of 0.
x=\frac{-72±0}{-162}
Multiply 2 times -81.
-81x^{2}+72x-16=-81\left(x-\frac{4}{9}\right)\left(x-\frac{4}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{9} for x_{1} and \frac{4}{9} for x_{2}.
-81x^{2}+72x-16=-81\times \frac{-9x+4}{-9}\left(x-\frac{4}{9}\right)
Subtract \frac{4}{9} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-81x^{2}+72x-16=-81\times \frac{-9x+4}{-9}\times \frac{-9x+4}{-9}
Subtract \frac{4}{9} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-81x^{2}+72x-16=-81\times \frac{\left(-9x+4\right)\left(-9x+4\right)}{-9\left(-9\right)}
Multiply \frac{-9x+4}{-9} times \frac{-9x+4}{-9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-81x^{2}+72x-16=-81\times \frac{\left(-9x+4\right)\left(-9x+4\right)}{81}
Multiply -9 times -9.
-81x^{2}+72x-16=-\left(-9x+4\right)\left(-9x+4\right)
Cancel out 81, the greatest common factor in -81 and 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}