Factor
\left(x-\left(-4\sqrt{5}-8\right)\right)\left(x-\left(4\sqrt{5}-8\right)\right)
Evaluate
x^{2}+16x-16
Graph
Share
Copied to clipboard
x^{2}+16x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\left(-16\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\left(-16\right)}}{2}
Square 16.
x=\frac{-16±\sqrt{256+64}}{2}
Multiply -4 times -16.
x=\frac{-16±\sqrt{320}}{2}
Add 256 to 64.
x=\frac{-16±8\sqrt{5}}{2}
Take the square root of 320.
x=\frac{8\sqrt{5}-16}{2}
Now solve the equation x=\frac{-16±8\sqrt{5}}{2} when ± is plus. Add -16 to 8\sqrt{5}.
x=4\sqrt{5}-8
Divide -16+8\sqrt{5} by 2.
x=\frac{-8\sqrt{5}-16}{2}
Now solve the equation x=\frac{-16±8\sqrt{5}}{2} when ± is minus. Subtract 8\sqrt{5} from -16.
x=-4\sqrt{5}-8
Divide -16-8\sqrt{5} by 2.
x^{2}+16x-16=\left(x-\left(4\sqrt{5}-8\right)\right)\left(x-\left(-4\sqrt{5}-8\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -8+4\sqrt{5} for x_{1} and -8-4\sqrt{5} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}