Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(-18x^{2}+4x+2)
Combine -15x^{2} and -3x^{2} to get -18x^{2}.
-18x^{2}+4x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-18\right)\times 2}}{2\left(-18\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\left(-18\right)\times 2}}{2\left(-18\right)}
Square 4.
x=\frac{-4±\sqrt{16+72\times 2}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-4±\sqrt{16+144}}{2\left(-18\right)}
Multiply 72 times 2.
x=\frac{-4±\sqrt{160}}{2\left(-18\right)}
Add 16 to 144.
x=\frac{-4±4\sqrt{10}}{2\left(-18\right)}
Take the square root of 160.
x=\frac{-4±4\sqrt{10}}{-36}
Multiply 2 times -18.
x=\frac{4\sqrt{10}-4}{-36}
Now solve the equation x=\frac{-4±4\sqrt{10}}{-36} when ± is plus. Add -4 to 4\sqrt{10}.
x=\frac{1-\sqrt{10}}{9}
Divide -4+4\sqrt{10} by -36.
x=\frac{-4\sqrt{10}-4}{-36}
Now solve the equation x=\frac{-4±4\sqrt{10}}{-36} when ± is minus. Subtract 4\sqrt{10} from -4.
x=\frac{\sqrt{10}+1}{9}
Divide -4-4\sqrt{10} by -36.
-18x^{2}+4x+2=-18\left(x-\frac{1-\sqrt{10}}{9}\right)\left(x-\frac{\sqrt{10}+1}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{10}}{9} for x_{1} and \frac{1+\sqrt{10}}{9} for x_{2}.
-18x^{2}+4x+2
Combine -15x^{2} and -3x^{2} to get -18x^{2}.