Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(-3f-2f^{2}\right)
Factor out 5.
f\left(-3-2f\right)
Consider -3f-2f^{2}. Factor out f.
5f\left(-2f-3\right)
Rewrite the complete factored expression.
-10f^{2}-15f=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
f=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\left(-10\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
f=\frac{-\left(-15\right)±15}{2\left(-10\right)}
Take the square root of \left(-15\right)^{2}.
f=\frac{15±15}{2\left(-10\right)}
The opposite of -15 is 15.
f=\frac{15±15}{-20}
Multiply 2 times -10.
f=\frac{30}{-20}
Now solve the equation f=\frac{15±15}{-20} when ± is plus. Add 15 to 15.
f=-\frac{3}{2}
Reduce the fraction \frac{30}{-20} to lowest terms by extracting and canceling out 10.
f=\frac{0}{-20}
Now solve the equation f=\frac{15±15}{-20} when ± is minus. Subtract 15 from 15.
f=0
Divide 0 by -20.
-10f^{2}-15f=-10\left(f-\left(-\frac{3}{2}\right)\right)f
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{2} for x_{1} and 0 for x_{2}.
-10f^{2}-15f=-10\left(f+\frac{3}{2}\right)f
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-10f^{2}-15f=-10\times \frac{-2f-3}{-2}f
Add \frac{3}{2} to f by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-10f^{2}-15f=5\left(-2f-3\right)f
Cancel out 2, the greatest common factor in -10 and -2.